參考文獻 |
[1.]Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L., Metal–organic frameworks: Structures and functional applications. Materials Today 2019, 27, 43-68.
[2.]Chen, Z.; Kirlikovali, K. O.; Idrees, K. B.; Wasson, M. C.; Farha, O. K., Porous materials for hydrogen storage. Chem 2022, 8 (3), 693-716.
[3.]Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
[4.]Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012, 112 (2), 1196-1231.
[5.]Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
[6.]Bétard, A.; Fischer, R. A., Metal-organic framework thin films: from fundamentals to applications. Chem Rev 2012, 112 (2), 1055-83.
[7.]Yang, J.; Yang, Y.-W., Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16 (10), 1906846.
[8.]Seidi, F.; Jouyandeh, M.; Taghizadeh, M.; Taghizadeh, A.; Vahabi, H.; Habibzadeh, S.; Formela, K.; Saeb, M., Metal-Organic Framework (MOF)/Epoxy Coatings: A Review. Materials 2020, 13, 16.
[9.]Khan, A., Jawaid, M., Asiri, A.M.A., Ni, W., & Rahman, M.M. (Eds.), Metal-Organic Framework Nanocomposites: From Design to Application 1st Edition ed.; CRC Press: Boca Raton, 2020.
[10.]Hu, Z.; Kundu, T.; Wang, Y.; Sun, Y.; Zeng, K.; Zhao, D., Modulated Hydrothermal Synthesis of Highly Stable MOF-808(Hf) for Methane Storage. ACS Sustainable Chemistry & Engineering 2020, 8, 17042-17053.
[11.]Bej, S.; Mandal, S.; Mondal, A.; Pal, T. K.; Banerjee, P., Solvothermal Synthesis of High-Performance d10-MOFs with Hydrogel Membranes @ “Turn-On” Monitoring of Formaldehyde in Solution and Vapor Phase. ACS Applied Materials & Interfaces 2021, 13 (21), 25153-25163.
[12.]Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
[13.]Laybourn, A.; Katrib, J.; Ferrari-John, R. S.; Morris, C. G.; Yang, S.; Udoudo, O.; Easun, T. L.; Dodds, C.; Champness, N. R.; Kingman, S. W.; Schröder, M., Metal–organic frameworks in seconds via selective microwave heating. Journal of Materials Chemistry A 2017, 5 (16), 7333-7338.
[14.]Ameloot, R.; Pandey, L.; Auweraer, M. V. d.; Alaerts, L.; Sels, B. F.; De Vos, D. E.,
72
Patterned film growth of metal–organic frameworks based on galvanic displacement. Chemical Communications 2010, 46 (21), 3735-3737.
[15.]Rassaei, L., Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem 2015, 2.
[16.]Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F., Mechanochemical Synthesis of Metal−Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas. Chemistry of Materials 2010, 22 (18), 5216-5221.
[17.]Huang, Y.-H.; Lo, W.-S.; Kuo, Y.-W.; Chen, W.-J.; Lin, C.-H.; Shieh, F.-K., Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications 2017, 53 (43), 5818-5821.
[18.]Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S., Sonochemical synthesis of MOF-5. Chemical Communications 2008, (47), 6336-6338.
[19.]Li, Z.-Q.; Qiu, L.-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.-Y.; Jiang, X., Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmental friendly method. Materials Letters 2009, 63, 78-80.
[20.]Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C., Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chemistry 2013, 19 (34), 11139-42.
[21.]Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O′Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 2006, 103 (27), 10186-10191.
[22.]Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O′Keeffe, M.; Yaghi, O. M., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 2010, 43 (1), 58-67.
[23.]Wu, H.; Zhou, W.; Yildirim, T., Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J Am Chem Soc 2007, 129 (17), 5314-5.
[24.]Huang, A.; Wang, N.; Kong, C.; Caro, J., Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance. Angew Chem Int Ed Engl 2012, 51 (42), 10551-5.
[25.]Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C. K., Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J Am Chem Soc 2012, 134 (35), 14345-8.
[26.]Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
73
[27.]Lei, Y.; Zhang, G.; Zhang, Q.; Yu, L.; Li, H.; Yu, H.; He, Y., Visualization of gaseous iodine adsorption on single zeolitic imidazolate framework-90 particles. Nat Commun 2021, 12 (1), 4483.
[28.]Ying, P.; Yu, J.; Su, W., Liquid‐Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Advanced Synthesis & Catalysis 2021, 363.
[29.]O’Connell, A.; Barry, A.; Burke, A. J.; Hutton, A. E.; Bell, E. L.; Green, A. P.; O’Reilly, E., Biocatalysis: landmark discoveries and applications in chemical synthesis. Chemical Society Reviews 2024, 53 (6), 2828-2850.
[30.]T.sriwong, K.; Matsuda, T., Recent Advances in Enzyme Immobilization Utilizing Nanotechnology for Biocatalysis. Organic Process Research & Development 2022, 26.
[31.]Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C., Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews 2017, 46 (11), 3386-3401.
[32.]Majewski, M. B.; Howarth, A. J.; Li, P.; Wasielewski, M. R.; Hupp, J. T.; Farha, O. K., Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm 2017, 19 (29), 4082-4091.
[33.]Shieh, F. K.; Wang, S. C.; Yen, C. I.; Wu, C. C.; Dutta, S.; Chou, L. Y.; Morabito, J. V.; Hu, P.; Hsu, M. H.; Wu, K. C.; Tsung, C. K., Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc 2015, 137 (13), 4276-9.
[34.]Liao, F. S.; Lo, W. S.; Hsu, Y. S.; Wu, C. C.; Wang, S. C.; Shieh, F. K.; Morabito, J. V.; Chou, L. Y.; Wu, K. C.; Tsung, C. K., Shielding against Unfolding by Embedding Enzymes in Metal-Organic Frameworks via a de Novo Approach. J Am Chem Soc 2017, 139 (19), 6530-6533.
[35.]Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Chen, S.-Y.; Yang, H.-C.; Hsu, Y.-S.; Lin, Z.-Y.; Chen, X.-H.; Kuo, P.-E.; Chou, L.-Y.; Tsung, C.-K.; Shieh, F.-K. Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks Nature communications [Online], 2019, p. 5002. PubMed. http://europepmc.org/abstract/MED/31676820
https://www.nature.com/articles/s41467-019-12966-0.pdf
https://doi.org/10.1038/s41467-019-12966-0
https://europepmc.org/articles/PMC6825160
https://europepmc.org/articles/PMC6825160?pdf=render (accessed 2019/11//).
[36.]Lam, P. K.; Vo, T. H.; Chen, J.-H.; Lin, S.-W.; Kuo, C.-L.; Liao, J.-J.; Chen, K.-Y.; Huang, S.-R.; Li, D.; Chang, Y.-H.; Chen, H.-Y.; Hsieh, H.-T.; Hsu, Y.-A.; Tsao, H.-K.; Yang, H.-C.; Shieh, F.-K., A green and ultrafast one-pot mechanochemical approach for efficient biocatalyst encapsulation in MOFs: insights from experiments and
74
computation. Journal of Materials Chemistry A 2023, 11 (45), 24678-24685.
[37.]Dudina, D. V.; Bokhonov, B. B., Materials Development Using High-Energy Ball Milling: A Review Dedicated to the Memory of M.A. Korchagin. Journal of Composites Science 2022, 6 (7), 188.
[38.]Lu, Y.; Guan, S.; Hao, L.; Yoshida, H., Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application. Coatings 2015, 5, 425-464.
[39.]Baláž, P., Mechanochemistry in Nanoscience and Minerals Engineering. 2008; p 1-413.
[40.]Daraio, D.; Villoria, J.; Ingram, A.; Alexiadis, A.; Stitt, E. H.; Munnoch, A. L.; Marigo, M., Using Discrete Element method (DEM) simulations to reveal the differences in the γ-Al<SUB>2</SUB>O<SUB>3</SUB> to α-Al<SUB>2</SUB>O<SUB>3</SUB> mechanically induced phase transformation between a planetary ball mill and an attritor mill. Minerals Engineering 2020, 155, 106374.
[41.]Hadef, F., Effect of High-Energy Ball Milling on Structure and Properties of Some Intermetallic Alloys: A Mini Review. Metallography, Microstructure, and Analysis 2019, 8 (4), 430-444.
[42.]Garbe, M.; Lehmann, L. T.; Berger, R. G.; Ersoy, F., Improvement in the Stability and Enzymatic Activity of Pleurotus sapidus Lipoxygenase Dissolved in Natural Deep Eutectic Solvents (NADESs). Life 2024, 14 (2), 271.
[43.]Ameh, E. S., A review of basic crystallography and x-ray diffraction applications. The International Journal of Advanced Manufacturing Technology 2019, 105 (7), 3289-3302.
[44.]Ståhl, K., POWDER DIFFRACTION AND THE RIETVELD METHOD.
[45.]Sun, S.; Zhang, X.; Cui, J.; Liang, S., Identification of the Miller indices of a crystallographic plane: a tutorial and a comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention. Nanoscale 2020, 12 (32), 16657-16677.
[46.]Zuo, J. M.; Spence, J. C. H., The Geometry of Electron Diffraction Patterns. In Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience, Zuo, J. M.; Spence, J. C. H., Eds. Springer New York: New York, NY, 2017; pp 49-75.
[47.]Wahab, M. A., Importance of d-Spacing in Diffraction of Crystals. In Mirror Symmetry: The Mother of all Crystal Symmetries, Wahab, M. A., Ed. Springer Nature Singapore: Singapore, 2024; pp 105-142.
[48.]Waseda, Y.; Matsubara, E.; Shinoda, K., Diffraction from Polycrystalline Samples and Determination of Crystal Structure. In X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems, Waseda, Y.; Matsubara, E.; Shinoda, K.,
75
Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp 107-167.
[49.]Ungár, T.; Tichy, G.; Gubicza, J.; Hellmig, R. J., Correlation between subgrains and coherently scattering domains. Powder Diffraction 2005, 20 (4), 366-375.
[50.]Giannini, C.; Ladisa, M.; Altamura, D.; Siliqi, D.; Sibillano, T.; De Caro, L., X-ray Diffraction: A Powerful Technique for the Multiple-Length-Scale Structural Analysis of Nanomaterials. Crystals 2016, 6 (8), 87.
[51.]Arunadevi, N.; Jone Kirubavathy, S., 4 - Bionanocomposites for rejuvenation of heavily contaminated environment. In Nanobiotechnology for Bioremediation, Adetunji, C. O.; Singh, R. P.; Singh, J.; Singh, K. R. B., Eds. Elsevier: 2023; pp 75-125.
[52.]Kirk, T. L., Chapter Two - A Review of Scanning Electron Microscopy in Near Field Emission Mode. In Advances in Imaging and Electron Physics, Hawkes, P. W., Ed. Elsevier: 2017; Vol. 204, pp 39-109.
[53.]Brodusch, N.; Demers, H.; Gauvin, R., Field Emission Scanning Electron Microscopy: New Perspectives for Materials Characterization. 2018.
[54.]Lewczuk, B.; Szyryńska, N., Field-Emission Scanning Electron Microscope as a Tool for Large-Area and Large-Volume Ultrastructural Studies. Animals (Basel) 2021, 11 (12).
[55.]Mohammed, A., UV-Visible Spectrophotometric Method and Validation of Organic Compounds. European Journal of Engineering Research and Science 2018, 3, 8.
[56.]Østergaard, J., UV/Vis Spectrophotometry and UV Imaging. In Analytical Techniques in the Pharmaceutical Sciences, Müllertz, A.; Perrie, Y.; Rades, T., Eds. Springer New York: New York, NY, 2016; pp 3-27.
[57.]Tan, Y. H.; Davis, J. A.; Fujikawa, K.; Ganesh, N. V.; Demchenko, A. V.; Stine, K. J., Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. Journal of Materials Chemistry 2012, 22 (14), 6733-6745.
[58.]Khuong, D. A.; Nguyen, H. N., Engineered Biochar as Gas Adsorbent. In Engineered Biochar: Fundamentals, Preparation, Characterization and Applications, Ramola, S.; Mohan, D.; Masek, O.; Méndez, A.; Tsubota, T., Eds. Springer Nature Singapore: Singapore, 2022; pp 237-258.
[59.]Lale, S.; Goyal, M.; Bansal, A., Development of Lyophilization Cycle and Effect of Excipients on the Stability of Catalase During Lyophilization. International journal of pharmaceutical investigation 2011, 1, 214-21.
[60.]KIKUCHI-TORII, K.; HAYASHI, S.; NAKAMOTO, H.; NAKAMURA, S., Properties of Aspergillus niger Catalase. The Journal of Biochemistry 1982, 92 (5), 1449-1456.
[61.]Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M., Secondary building units as the
76
turning point in the development of the reticular chemistry of MOFs. Science Advances 2018, 4 (10), eaat9180.
[62.]Patel, B.; Watanabe, M., An Inexpensive Approach for Bright-Field and Dark-Field Imaging by Scanning Transmission Electron Microscopy in Scanning Electron Microscopy. Microscopy and Microanalysis 2014, 20 (1), 124-132. |