博碩士論文 111223067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.118.193.223
姓名 陳靖蕙(Jing-Hui Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用機械力化學法快速合成咪唑骨架材料及其酵素複合材料之探討
(Investigation of Rapid Synthesis of Metal-organic Frameworks and Enzyme-MOF Biocomposites via Mechanochemical Approach)
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-30以後開放)
摘要(中) 酵素具有促進生化反應及專一性等特性,應用範圍廣。但對於環境耐受度低,需要通過固定化提高其穩定性,並實現回收再利用以降低成本。而有機金屬框架材料(Metal-organic Frameworks, MOFs)具備多孔隙以及高穩定性等特質,很適合作為酵素載體。因此本實驗室於2015年開發了類沸石咪唑骨架材料-90 (Zeolitic Imidazolate Framework-90, ZIF-90)封裝過氧化氫酶(Catalase, CAT)的原位創新合成法(de novo approach)。此方法雖為酵素固定化提出了一個新的思維,但耗時長且僅適用在特定的MOFs中。故在2019年,我們改以溶液輔助研磨法(Liquid‐Assisted Grinding),將酵素封裝在UiO-66-NH2等MOFs中。而此方法尚有需要被優化的地方,例如需要使用到有機溶劑、合成時間長達五分鐘、封裝酵素須分為兩步驟而非一鍋法完成以及無法以單晶包覆酵素等,若能改進上述合成的缺陷勢必能使溶液輔助研磨法具備更強的競爭力。
本篇論文成功的透過溶液輔助研磨法在10秒內合成單晶包覆的酵素材料複合物,CAT@ZIF-90,相較於本實驗室之前的研究,酵素活性從2.68 × 10−2提高至1.98 × 10−1。而為了更進一步了解酵素材料複合物的合成機制,利用不同溶液進行溶液輔助研磨,並成功推論出供後續以溶液輔助研磨法合成其他種類MOFs時緩衝溶液選擇的依據。並以上述成果進行酵素材料複合物包覆率提升的研究,得到最高包覆率約為34%,制定出一個新的能有效提高包覆率的策略。
摘要(英) Enzymes have characteristics such as promoting biochemical reactions and specificity, making them widely applicable. However, their low tolerance to environmental conditions necessitates immobilization to enhance stability and enable recycling to reduce costs. Metal-organic frameworks (MOFs), with their porous nature and high stability, are well-suited as enzyme carriers. Therefore, in 2015, our laboratory developed a de novo approach for encapsulating catalase (CAT) in zeolitic imidazolate framework-90 (ZIF-90). While this method provided a new perspective on enzyme immobilization, it was time-consuming and only applicable to specific MOFs. Consequently, in 2019, we adopted the liquid-assisted grinding (LAG) to encapsulate enzymes in MOFs such as UiO-66-NH2. However, this method still required optimization, such as the use of organic solvents, a synthesis time of up to five minutes, a two-step encapsulation process instead of a one-pot method, and the inability to encapsulate enzymes in single crystals. Improving these synthesis drawbacks would undoubtedly enhance the competitiveness of the LAG method.
This paper successfully synthesized single-crystal encapsulated enzyme-MOF biocomposites, CAT@ZIF-90, in 10 seconds using the LAG. Compared to our previous research, the enzyme activity increased from 2.68 × 10−2 to 1.98 × 10−1. To further understand the synthesis mechanism of enzyme-MOF biocomposites, different solutions were used for LAG, successfully deducing the criteria for selecting buffer solutions for synthesizing other types of MOFs using the LAG. Based on these results, a study to improve the loading of enzyme-MOF biocomposites was conducted, achieving a maximum loading of approximately 34%, and formulating a new strategy that effectively enhances the loading.
關鍵字(中) ★ 酵素固定化
★ 有機金屬框架材料
★ 類沸石咪唑骨架材料
★ 機械力球磨法
關鍵字(英) ★ Enzyme
★ MOFs
★ ZIFs
★ ZIF-90
★ Mechanochemistry
論文目次 摘要..................................................................................................................................i
Abstract ...........................................................................................................................ii
Eligibility........................................................................................................................iv
圖目錄..........................................................................................................................viii
表目錄............................................................................................................................xi
第一章 緒論................................................................................................................1
1-1金屬有機骨架材料........................................................................................1
1-2類沸石咪唑骨架材料....................................................................................4
1-3機械力化學法................................................................................................6
1-4酵素固定化....................................................................................................7
1-5研究動機及目的............................................................................................8
第二章 實驗部分......................................................................................................10
2-1實驗藥品......................................................................................................10
2-2實驗儀器......................................................................................................12
2-3實驗儀器之原理..........................................................................................14
2-3-1中量快速球磨機(Mixer Mill) .......................................................14
2-3-2X射線粉末繞射儀(X-ray powder diffractometer).........................17
2-3-3場發掃描式電子顯微鏡(Field-emission Scanning Electron Microscope)...................................................................................................19
2-3-4紫外光可見光分光光譜儀(UV-Visible spectrophotometer) ........21
2-3-5十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE)........................................22
2-3-6比表面積及孔隙度分析儀(Surface Area and Pore Size Distribution Analyzer).......................................................................................................24
2-4酵素..............................................................................................................27
2-4-1過氧化氫酶(Catalase, CAT) ............................................................27
2-4-2血紅素(Hemoglobin, Hb) ................................................................27
2-4-3溶菌酶(Lysozyme, LYS) ................................................................28
2-4-4蛋白酶(protease)..........................................................................28
2-5實驗步驟......................................................................................................29
2-5-1機械力化學法合成Enzyme@ZIF-90..............................................29
2-5-2偵測材料中蛋白質濃度...................................................................30
2-5-3酵素金屬有機骨架複合材料之蛋白質凝膠電泳分析...................32
2-5-4偵測過氧化氫酶活性之方法(Ferrous Oxidation in Xylenol orange assay, FOX assay).......................................................................................34
2-5-5偵測過氧化氫酶在蛋白酶K環境下之活性檢測..........................36
第三章 結果與討論—酵素材料複合物的合成與活性探討.................................37
3-1CAT@ZIF-90之合成條件優化與鑑定......................................................37
3-2CAT@ZIF-90之X射線粉末繞射圖譜分析...................................37
3-3掃描式電子顯微鏡影像分析...........................................................44
3-4十二烷基硫酸鈉聚丙烯酰胺凝膠電泳...........................................47
3-5CAT@ZIF-90合成條件與活性探討..........................................................49
3-6緩衝溶液協助MOF生成之合成機制探討...............................................54
第四章 結論與未來展望..........................................................................................58
第五章 結果與討論—增加酵素材料複合物包覆率之研究.................................60
5-1材料合成條件選擇與增加酵素包覆率策略之研究.................................60
5-2CAT@ZIF-90之合成、鑑定與包覆率探討..............................................62
5-3Hb@ZIF-90之合成、鑑定與包覆率探討................................................64
5-4LYS@ZIF-90之合成、鑑定與包覆率探討..............................................66
第六章 結論與未來展望..........................................................................................69
第七章 參考文獻......................................................................................................71
參考文獻 [1.]Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L., Metal–organic frameworks: Structures and functional applications. Materials Today 2019, 27, 43-68.
[2.]Chen, Z.; Kirlikovali, K. O.; Idrees, K. B.; Wasson, M. C.; Farha, O. K., Porous materials for hydrogen storage. Chem 2022, 8 (3), 693-716.
[3.]Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
[4.]Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012, 112 (2), 1196-1231.
[5.]Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
[6.]Bétard, A.; Fischer, R. A., Metal-organic framework thin films: from fundamentals to applications. Chem Rev 2012, 112 (2), 1055-83.
[7.]Yang, J.; Yang, Y.-W., Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16 (10), 1906846.
[8.]Seidi, F.; Jouyandeh, M.; Taghizadeh, M.; Taghizadeh, A.; Vahabi, H.; Habibzadeh, S.; Formela, K.; Saeb, M., Metal-Organic Framework (MOF)/Epoxy Coatings: A Review. Materials 2020, 13, 16.
[9.]Khan, A., Jawaid, M., Asiri, A.M.A., Ni, W., & Rahman, M.M. (Eds.), Metal-Organic Framework Nanocomposites: From Design to Application 1st Edition ed.; CRC Press: Boca Raton, 2020.
[10.]Hu, Z.; Kundu, T.; Wang, Y.; Sun, Y.; Zeng, K.; Zhao, D., Modulated Hydrothermal Synthesis of Highly Stable MOF-808(Hf) for Methane Storage. ACS Sustainable Chemistry & Engineering 2020, 8, 17042-17053.
[11.]Bej, S.; Mandal, S.; Mondal, A.; Pal, T. K.; Banerjee, P., Solvothermal Synthesis of High-Performance d10-MOFs with Hydrogel Membranes @ “Turn-On” Monitoring of Formaldehyde in Solution and Vapor Phase. ACS Applied Materials & Interfaces 2021, 13 (21), 25153-25163.
[12.]Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
[13.]Laybourn, A.; Katrib, J.; Ferrari-John, R. S.; Morris, C. G.; Yang, S.; Udoudo, O.; Easun, T. L.; Dodds, C.; Champness, N. R.; Kingman, S. W.; Schröder, M., Metal–organic frameworks in seconds via selective microwave heating. Journal of Materials Chemistry A 2017, 5 (16), 7333-7338.
[14.]Ameloot, R.; Pandey, L.; Auweraer, M. V. d.; Alaerts, L.; Sels, B. F.; De Vos, D. E.,
72
Patterned film growth of metal–organic frameworks based on galvanic displacement. Chemical Communications 2010, 46 (21), 3735-3737.
[15.]Rassaei, L., Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem 2015, 2.
[16.]Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F., Mechanochemical Synthesis of Metal−Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas. Chemistry of Materials 2010, 22 (18), 5216-5221.
[17.]Huang, Y.-H.; Lo, W.-S.; Kuo, Y.-W.; Chen, W.-J.; Lin, C.-H.; Shieh, F.-K., Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications 2017, 53 (43), 5818-5821.
[18.]Son, W.-J.; Kim, J.; Kim, J.; Ahn, W.-S., Sonochemical synthesis of MOF-5. Chemical Communications 2008, (47), 6336-6338.
[19.]Li, Z.-Q.; Qiu, L.-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.-Y.; Jiang, X., Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmental friendly method. Materials Letters 2009, 63, 78-80.
[20.]Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C., Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chemistry 2013, 19 (34), 11139-42.
[21.]Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O′Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 2006, 103 (27), 10186-10191.
[22.]Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O′Keeffe, M.; Yaghi, O. M., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 2010, 43 (1), 58-67.
[23.]Wu, H.; Zhou, W.; Yildirim, T., Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J Am Chem Soc 2007, 129 (17), 5314-5.
[24.]Huang, A.; Wang, N.; Kong, C.; Caro, J., Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance. Angew Chem Int Ed Engl 2012, 51 (42), 10551-5.
[25.]Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C. K., Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J Am Chem Soc 2012, 134 (35), 14345-8.
[26.]Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
73
[27.]Lei, Y.; Zhang, G.; Zhang, Q.; Yu, L.; Li, H.; Yu, H.; He, Y., Visualization of gaseous iodine adsorption on single zeolitic imidazolate framework-90 particles. Nat Commun 2021, 12 (1), 4483.
[28.]Ying, P.; Yu, J.; Su, W., Liquid‐Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Advanced Synthesis & Catalysis 2021, 363.
[29.]O’Connell, A.; Barry, A.; Burke, A. J.; Hutton, A. E.; Bell, E. L.; Green, A. P.; O’Reilly, E., Biocatalysis: landmark discoveries and applications in chemical synthesis. Chemical Society Reviews 2024, 53 (6), 2828-2850.
[30.]T.sriwong, K.; Matsuda, T., Recent Advances in Enzyme Immobilization Utilizing Nanotechnology for Biocatalysis. Organic Process Research & Development 2022, 26.
[31.]Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C., Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews 2017, 46 (11), 3386-3401.
[32.]Majewski, M. B.; Howarth, A. J.; Li, P.; Wasielewski, M. R.; Hupp, J. T.; Farha, O. K., Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm 2017, 19 (29), 4082-4091.
[33.]Shieh, F. K.; Wang, S. C.; Yen, C. I.; Wu, C. C.; Dutta, S.; Chou, L. Y.; Morabito, J. V.; Hu, P.; Hsu, M. H.; Wu, K. C.; Tsung, C. K., Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc 2015, 137 (13), 4276-9.
[34.]Liao, F. S.; Lo, W. S.; Hsu, Y. S.; Wu, C. C.; Wang, S. C.; Shieh, F. K.; Morabito, J. V.; Chou, L. Y.; Wu, K. C.; Tsung, C. K., Shielding against Unfolding by Embedding Enzymes in Metal-Organic Frameworks via a de Novo Approach. J Am Chem Soc 2017, 139 (19), 6530-6533.
[35.]Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Chen, S.-Y.; Yang, H.-C.; Hsu, Y.-S.; Lin, Z.-Y.; Chen, X.-H.; Kuo, P.-E.; Chou, L.-Y.; Tsung, C.-K.; Shieh, F.-K. Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks Nature communications [Online], 2019, p. 5002. PubMed. http://europepmc.org/abstract/MED/31676820
https://www.nature.com/articles/s41467-019-12966-0.pdf
https://doi.org/10.1038/s41467-019-12966-0
https://europepmc.org/articles/PMC6825160
https://europepmc.org/articles/PMC6825160?pdf=render (accessed 2019/11//).
[36.]Lam, P. K.; Vo, T. H.; Chen, J.-H.; Lin, S.-W.; Kuo, C.-L.; Liao, J.-J.; Chen, K.-Y.; Huang, S.-R.; Li, D.; Chang, Y.-H.; Chen, H.-Y.; Hsieh, H.-T.; Hsu, Y.-A.; Tsao, H.-K.; Yang, H.-C.; Shieh, F.-K., A green and ultrafast one-pot mechanochemical approach for efficient biocatalyst encapsulation in MOFs: insights from experiments and
74
computation. Journal of Materials Chemistry A 2023, 11 (45), 24678-24685.
[37.]Dudina, D. V.; Bokhonov, B. B., Materials Development Using High-Energy Ball Milling: A Review Dedicated to the Memory of M.A. Korchagin. Journal of Composites Science 2022, 6 (7), 188.
[38.]Lu, Y.; Guan, S.; Hao, L.; Yoshida, H., Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application. Coatings 2015, 5, 425-464.
[39.]Baláž, P., Mechanochemistry in Nanoscience and Minerals Engineering. 2008; p 1-413.
[40.]Daraio, D.; Villoria, J.; Ingram, A.; Alexiadis, A.; Stitt, E. H.; Munnoch, A. L.; Marigo, M., Using Discrete Element method (DEM) simulations to reveal the differences in the γ-Al<SUB>2</SUB>O<SUB>3</SUB> to α-Al<SUB>2</SUB>O<SUB>3</SUB> mechanically induced phase transformation between a planetary ball mill and an attritor mill. Minerals Engineering 2020, 155, 106374.
[41.]Hadef, F., Effect of High-Energy Ball Milling on Structure and Properties of Some Intermetallic Alloys: A Mini Review. Metallography, Microstructure, and Analysis 2019, 8 (4), 430-444.
[42.]Garbe, M.; Lehmann, L. T.; Berger, R. G.; Ersoy, F., Improvement in the Stability and Enzymatic Activity of Pleurotus sapidus Lipoxygenase Dissolved in Natural Deep Eutectic Solvents (NADESs). Life 2024, 14 (2), 271.
[43.]Ameh, E. S., A review of basic crystallography and x-ray diffraction applications. The International Journal of Advanced Manufacturing Technology 2019, 105 (7), 3289-3302.
[44.]Ståhl, K., POWDER DIFFRACTION AND THE RIETVELD METHOD.
[45.]Sun, S.; Zhang, X.; Cui, J.; Liang, S., Identification of the Miller indices of a crystallographic plane: a tutorial and a comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention. Nanoscale 2020, 12 (32), 16657-16677.
[46.]Zuo, J. M.; Spence, J. C. H., The Geometry of Electron Diffraction Patterns. In Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience, Zuo, J. M.; Spence, J. C. H., Eds. Springer New York: New York, NY, 2017; pp 49-75.
[47.]Wahab, M. A., Importance of d-Spacing in Diffraction of Crystals. In Mirror Symmetry: The Mother of all Crystal Symmetries, Wahab, M. A., Ed. Springer Nature Singapore: Singapore, 2024; pp 105-142.
[48.]Waseda, Y.; Matsubara, E.; Shinoda, K., Diffraction from Polycrystalline Samples and Determination of Crystal Structure. In X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems, Waseda, Y.; Matsubara, E.; Shinoda, K.,
75
Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp 107-167.
[49.]Ungár, T.; Tichy, G.; Gubicza, J.; Hellmig, R. J., Correlation between subgrains and coherently scattering domains. Powder Diffraction 2005, 20 (4), 366-375.
[50.]Giannini, C.; Ladisa, M.; Altamura, D.; Siliqi, D.; Sibillano, T.; De Caro, L., X-ray Diffraction: A Powerful Technique for the Multiple-Length-Scale Structural Analysis of Nanomaterials. Crystals 2016, 6 (8), 87.
[51.]Arunadevi, N.; Jone Kirubavathy, S., 4 - Bionanocomposites for rejuvenation of heavily contaminated environment. In Nanobiotechnology for Bioremediation, Adetunji, C. O.; Singh, R. P.; Singh, J.; Singh, K. R. B., Eds. Elsevier: 2023; pp 75-125.
[52.]Kirk, T. L., Chapter Two - A Review of Scanning Electron Microscopy in Near Field Emission Mode. In Advances in Imaging and Electron Physics, Hawkes, P. W., Ed. Elsevier: 2017; Vol. 204, pp 39-109.
[53.]Brodusch, N.; Demers, H.; Gauvin, R., Field Emission Scanning Electron Microscopy: New Perspectives for Materials Characterization. 2018.
[54.]Lewczuk, B.; Szyryńska, N., Field-Emission Scanning Electron Microscope as a Tool for Large-Area and Large-Volume Ultrastructural Studies. Animals (Basel) 2021, 11 (12).
[55.]Mohammed, A., UV-Visible Spectrophotometric Method and Validation of Organic Compounds. European Journal of Engineering Research and Science 2018, 3, 8.
[56.]Østergaard, J., UV/Vis Spectrophotometry and UV Imaging. In Analytical Techniques in the Pharmaceutical Sciences, Müllertz, A.; Perrie, Y.; Rades, T., Eds. Springer New York: New York, NY, 2016; pp 3-27.
[57.]Tan, Y. H.; Davis, J. A.; Fujikawa, K.; Ganesh, N. V.; Demchenko, A. V.; Stine, K. J., Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy. Journal of Materials Chemistry 2012, 22 (14), 6733-6745.
[58.]Khuong, D. A.; Nguyen, H. N., Engineered Biochar as Gas Adsorbent. In Engineered Biochar: Fundamentals, Preparation, Characterization and Applications, Ramola, S.; Mohan, D.; Masek, O.; Méndez, A.; Tsubota, T., Eds. Springer Nature Singapore: Singapore, 2022; pp 237-258.
[59.]Lale, S.; Goyal, M.; Bansal, A., Development of Lyophilization Cycle and Effect of Excipients on the Stability of Catalase During Lyophilization. International journal of pharmaceutical investigation 2011, 1, 214-21.
[60.]KIKUCHI-TORII, K.; HAYASHI, S.; NAKAMOTO, H.; NAKAMURA, S., Properties of Aspergillus niger Catalase. The Journal of Biochemistry 1982, 92 (5), 1449-1456.
[61.]Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M., Secondary building units as the
76
turning point in the development of the reticular chemistry of MOFs. Science Advances 2018, 4 (10), eaat9180.
[62.]Patel, B.; Watanabe, M., An Inexpensive Approach for Bright-Field and Dark-Field Imaging by Scanning Transmission Electron Microscopy in Scanning Electron Microscopy. Microscopy and Microanalysis 2014, 20 (1), 124-132.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2024-9-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明