博碩士論文 111223061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.218.108.24
姓名 呂翰卿(Lu-Hang Ching)  查詢紙本館藏   畢業系所 化學學系
論文名稱 熱脫附方法應用於揮發性有機污染物分析與氣相層析質譜儀離子源穩定性探討
相關論文
★ 三種自製非甲烷總碳氫分析儀系統改良並應用於煙道及周界監測★ 非甲烷總碳氫層析法分析儀改良及實場驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-1以後開放)
摘要(中) 台灣環境部 (前環境保護署) 為了即時掌握臭氧前驅物的排放來源與了解物種與臭氧生成的關係,在全台設置十數個光化學評估監測站 (Photochemical Assessment Monitoring Stations, PAMS),每站均針對特定的54種揮發性有機化合物 (Volatile Organic Compound, VOCs) 進行一小時一筆的連續監測。除了PAMS測站,環境部也開始針對有害空氣污染物 (Hazardous Air Pollutants, HAPs) 列表中之具毒性VOCs進行環境濃度監測。由於這些物種空氣濃度介於ppb (v/v) 甚至到ppt (v/v) 的低濃度範圍,需要熱脫附方法對空氣樣品進行濃縮。本研究承襲過去實驗室的經驗,開發一套具有低偵測極限熱脫附儀,並將其與主流之商業型GC/MS串聯以應用於環境監測。該儀器具備多項功能,包括管線溫度控制、漏氣測試、流量控制、複合進樣等,針對近百個VOC提供小時數據
最終開發的熱脫附儀經由台灣PAMS光化學評估監測站所參照的NIEA A505.12B標準方法進行效能驗證。測試結果顯示,儀器精密度的相對標準偏差值在1%至4.6%之間,符合標準方法規範的要求 (低於25 %)。儀器準確度測試顯示物種回收率介於84.48%至122.74%,符合標準規範範圍 (75 %-125 %)。此外,與光化測站現行使用的商業型熱脫附儀比較,本研究開發的儀器在分析圖譜中顯示出更好的峰分離效果,90%的峰具有較佳分離度,且所有峰均顯示較低的拖尾現象。
而在以質譜進行環境監測時,水氣對質譜離子源感度有顯著影響,離子源感度的快速下降會導致維護成本提高與數據連貫性不足等問題。本研究透過改變進樣條件-氣體樣品的濕氣程度,確認水氣是影響離子源感度的關鍵原因。實驗過程加入四種內標準品-Bromochloromethane, 1,4-Difluorobenzene, Chlorobenzene-d5, p-Bromofluorobenzene。內標準品可以校正質譜定量的濃度,也直觀地提供離子源感度表現。改變進樣條件並觀察四筆內標準品峰積分面積,來判斷離子源感度是否受影響。加入內標準品可以校正質譜定量的濃度,也直觀地提供離子源感度表現。經全乾氣體70筆測試後,四種內標準品總面積和為原先之103.7%;相對地,在第70筆加濕氣體測試後,其內標準品面積總和下降至僅剩55.10%。足見水氣對離子源壽命之影響。
在實際環境連續監測中,將普通層析管柱改為低流失 (Low bleeding) 管柱。低流失管柱低背壓、薄膜厚特性使其靜相較不易被沖刷出來到偵檢器,並導致離子源汙染而降低感度。研究結果顯示,低流失管柱測試後內標面積總和下降至47.49%;對比普通層析管柱面積總和下降至8.55%。透過分析結果可以推測管柱塗層與離子源感度之間的密切關係。使用低流失管柱能有效對抗水氣對於感度的影響,有助於延長離子源壽命,並提高監測儀器的穩定性與使用天數,減少維護成本。
摘要(英) To promptly identify emission sources of ozone precursors and clarify the relationship between volatile organic compounds (VOCs) and ozone formation, the Ministry of Environment (former Environmental Protection Administration) established multiple Photochemical Assessment Monitoring Stations (PAMS) in Taiwan. These stations continuously monitor 54 VOCs hourly. In addition to PAMS, the Ministry of Environment also enacted regulations to monitor VOCs listed as hazardous air pollutants (HAPs). These toxic VOCs range from sub-ppb (v/v) to ppt (v/v), thus requiring the thermal desorption (TD) technique to preconcentrate air samples. This study builds on previous laboratory experience to develop a low detection limit TD system, coupled with a commercial GC/MS system for online monitoring. The instrument includes features such as temperature control, leak test, flow control, multi-sampling, etc.
The developed TD system was tested following the PAMS standard method, i.e., NIEA A505.12B. The precision test showed a relative standard deviation (RSD) of 1% to 4.6%, well below the method’s requirement of 25%. The accuracy test results demonstrated the recovery of 84.48% to 122.74%, withing the method’s criteria of 75% to 125%. When comparing the developed system with a commercial counterpart used at PAMS stations, 90% of the peaks showed improved separation, and all peaks displayed less tailing in chromatography.
Water vapor in the environment greatly affects the sensitivity of the mass spectrometer, leading to a rapid decrease in ion source sensitivity, increased maintenance costs, and inconsistent results. In this study, we demonstrate that moisture is the key factor affecting ion source sensitivity by varying the humidity of the sample and introducing four internal standards (Bromochloromethane, 1,4-Difluorobenzene, Chlorobenzene-d5, and p-Bromofluorobenzene) to evaluate the impact on ion source sensitivity. Internal standards allow for mass spectrometry calibration and direct monitoring of ion source stability. After 70 consecutive injections with dry gas, the peak areas of the four internal standards only changed by 3.7% on average. In contrast, after the 70th test with humid gas, the peak areas of the internal standard decreased to 55.10%, demonstrating the significant impact of moisture on the ion source’s sensitivity.
For environmental monitoring, we replaced regular capillary columns with low-bleed columns. These low-bleed columns, which feature low backpressure and thicker films, reduce the likelihood of stationary phase material being carried into the detector, thereby minimizing ion source contamination and maintaining sensitivity. Results showed that after testing with low-bleed columns, the internal standard area decreased to 47.49%, compared to only 8.55% left with regular columns. This result demonstrates how the properties of stationary phase can affect ion source sensitivity. Using low-bleed columns can effectively counteract the impact of water vapor on the ion source sensitivity, prolonging the service life of the ion source. Ultimately, this increases the stability and longevity of the monitoring instruments and reduces the overall maintenance costs.
關鍵字(中) ★ 分析化學
★ 大氣分析
★ 揮發性有機汙染物
★ 氣象層析質譜儀
★ 熱脫附方法
關鍵字(英) ★ VOCs
★ Ion source
★ Thermal desorption
★ Gas Chromatography
★ GC/MS
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xiii
第一章 前言 1
1-1研究背景 1
1-1-1 有害空氣污染物 (HAPs) 2
1-1-2 揮發性有機化合物 (VOCs) 4
1-2 美國針對揮發性有機汙染物管制辦法 6
1-3 國內針對揮發性有機汙染物管制方法 9
1-4 環境監測方法比較 11
1-4-1 NIEA A715.16B 不銹鋼採樣筒/氣相層析質譜法 13
1-4-2 NIEA A505.12B 氣相層析/火焰離子化偵測法 14
1-4-3 線上熱脫附氣相層析系統 18
1-4-4 除水功能比較 19
1-5 內標準品與感度 22
1-5-1 內標準品添加 23
1-5-2 儀器感度 25
1-6 研究目的 27
第二章 熱脫附儀開發 29
2-1實驗方法與儀器設計 29
2-1-1 熱脫附儀零件布局 29
2-1-2 氣體流路設計 31
2-1-3 樣品進樣模式與管線保溫 32
2-1-4 除水與吸脫附濃縮阱設計 35
2-1-5 除水管與吸附管 37
2-2 硬體與部件控制 39
2-2-1 電磁式繼電器 (Relay) 40
2-2-2 氣動閥與電磁閥 41
2-2-3 溫控器與固態繼電器 44
2-2-4 APG通訊板 45
2-2-5 流量控制器 46
2-4 儀器流路設計 47
2-4-1 系統停機流路 (Stop State) 48
2-4-2 系統待機流路 (Standby) 49
2-4-3 保壓測試流路 (Leaktest) 51
2-4-4 系統預冷流路 (Pre-cooling) 55
2-4-5 樣品吹拂流路 (Sample Purge) 57
2-4-6 樣品捕集濃縮流路 (Sample trapping) 58
2-4-7 熱脫附進樣流路 (Thermal Desorption) 60
2-4-8 樣品清潔流路 ( Condition) 61
第三章 儀器性能 63
3-1 分析系統設置 63
3-1-1 中心切割技術 (Heart-Cut) 64
3-1-2 儀器參數 68
3-2 檢量線建立 72
3-3 儀器穩定性檢測 72
3-4 方法偵測極限 74
3-6熱脫附儀與商業型機台性能比較 78
3-7 小結 83
第四章 質譜儀感度下降原因探討 85
4-1質譜於環境監測扮演角色 85
4-1-1 質譜於環境監測之優點 86
4-1-2 離子源感度衰退原因探討 87
4-2 設計實驗 90
4-2-1 進樣條件設置 92
4-2-2 層析管柱比較 94
4-2-3 管柱流失 (Column Bleeding) 96
4-3 研究結果 99
4-3-1 乾濕氣體樣品分析結果 99
4-3-2 低流失管柱衰退比較 103
五、結論 107
參考文獻 109
參考文獻 1. Hahad, O., et al., Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. International journal of molecular sciences, 2020. 21(12): p. 4306.
2. Cohen, A.J., et al., Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The lancet, 2017. 389(10082): p. 1907-1918.
3. Chen, S.-P., et al., Taiwan ozone trend in response to reduced domestic precursors and perennial transboundary influence. Environmental Pollution, 2021. 289: p. 117883.
4. World Health Organization, Inter-Organization Programme for the Sound Management of Chemicals, Principles for modelling dose-response for the risk assessment of chemicals. Vol. 239. 2009: World Health Organization.
5. Popp, D., Pollution control innovations and the Clean Air Act of 1990. Journal of Policy Analysis and Management, 2003. 22(4): p. 641-660.
6. Schmincke, H.-U. and H.-U. Schmincke, Volcanic hazards, volcanic catastrophes, and disaster mitigation. Volcanism, 2004: p. 229-258.
7. Guo, Y., et al., Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Applied Catalysis B: Environmental, 2021. 281: p. 119447.
8. Leikauf, G.D., Hazardous air pollutants and asthma. Environmental Health Perspectives, 2002. 110(suppl 4): p. 505-526.
9. Wang, F., et al., Effect of exposure to volatile organic compounds (VOCs) on airway inflammatory response in mice. The Journal of toxicological sciences, 2012. 37(4): p. 739-748.
10. Tang, X., et al., Complete oxidation of formaldehyde over Ag/MnOx–CeO2 catalysts. Chemical Engineering Journal, 2006. 118(1-2): p. 119-125.
11. Huang, B., et al., Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies. Environment international, 2014. 71: p. 118-138.
12. U.S. Environmental Protection Agency, Technical Overview of Volatile Organic Compounds. 2024.
13. Zhu, L., D. Shen, and K.H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. Journal of hazardous materials, 2020. 389: p. 122102.
14. 中華民國 環境部 國家環境研究院. 揮發性有機物空氣污染管制及排放標準. Available from: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020030.
15. Ryerson, T., et al., Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science, 2001. 292(5517): p. 719-723.
16. Yari, A.R., et al., Study of ground-level ozone and its health risk assessment in residents in Ahvaz City, Iran during 2013. Toxin reviews, 2016. 35(3-4): p. 201-206.
17. Jacobs, E.T., J.L. Burgess, and M.B. Abbott, The Donora smog revisited: 70 years after the event that inspired the clean air act. American journal of public health, 2018. 108(S2): p. S85-S88.
18. Agency, U.S.E.P., Compendium Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes 1999.
19. U.S., E.P.A., Compendium Method TO-15Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS). 1999.
20. Agency, U.S.E.P., Compendium Method TO-14A Determination Of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography 1999
21. 固定污染源空氣污染物危害影響評估暨消費性產品揮發性有機物管制推動計畫. 2014.
22. 行政院環境保護署, 固定污染源空氣污染防制費收費費率修正草案總說明. 2018.
23. 空氣品質監測網 光化測站. 2024; Available from: https://airtw.moenv.gov.tw/CHT/TaskMonitoring/Photochemical/PhotochemicalIntro.aspx.
24. 中華民國環境部, 空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法. 2020.
25. Holm, T., Aspects of the mechanism of the flame ionization detector. Journal of Chromatography A, 1999. 842(1-2): p. 221-227.
26. 王美珠, 針對工業排放之污染性有機氣態物質開發連續監測技術, in 化學系. 2016, 國立中央大學.
27. 李冠均, 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物, in 化學系. 2020, 國立中央大學.
28. 楊雅宜, 線上熱脫附-氣相層析/質譜儀技術即時監測工業區空氣中有害揮發性有機化合物, in 化學系. 2022, 國立中央大學.
29. Korban, A., et al., The perspectives of ethanol usage as an internal standard for the quantification of volatile compounds in alcoholic products by GC‐MS. Journal of Mass Spectrometry, 2020. 55(3): p. e4493.
30. 交通部中央氣象署. 交通部中央氣象署氣候月平均相對濕度. 2024 2024/07/15 [cited 2024; Available from: https://www.cwa.gov.tw/V8/C/C/Statistics/monthlymean.html.
31. 朱晨瑄, 以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物, in 化學系. 2020, 國立中央大學.
32. 林宥辰, 開發氣相層析心切技術分析空氣中有害揮發性有機化合物, in 化學系. 2023, 國立中央大學.
33. Deans, D.R., A new technique for heart cutting in gas chromatography [1]. Chromatographia, 1968. 1(1): p. 18-22.
34. C. Ruhle, G.T.E., S. Urban, J.P. Dufour, P.D. Morrison, P.J. Marriott, Multiple component isolation in preparative multidimensional gas chromatography with characterisation by mass spectrometry and nuclear magnetic resonance spectroscopy. J. Chromatogr. A, 2009. 1216: p. 5740-5747.
35. C.P.G. Ruhle, J.N., P.D. Morrison, R.C. Jones, T. Caradoc-Davies, A.J. Canty, M.G. Gardiner, V.A. Tolhurst, P.J. Marriott, Characterization of tetra-aryl benzene isomers by using preparative gas chromatography with mass spectrometry, nuclear magnetic resonance spectroscopy, and x-ray crystallographic methods. Anal. Chem, 2010. 82: p. 4501-4509.
36. D. Sciarrone, S.P., C. Ragonese, P.Q. Tranchida, P. Dugo, L. Mondello, Increasing the isolated quantities and purities of volatile compounds by using a triple Deans-switch multidimensional preparative gas chromatographic system with an apolar-wax-ionic liquid stationary-phase combination. Anal. Chem, 2012. 84: p. 7092-7098.
37. G.T. Eyres, S.U., P.D. Morrison, P.J. Marriott, Application of microscale-preparative multidimensional gas chromatography with nuclear magnetic resonance spectroscopy for identification of pure methylnaphthalenes from crude oils. J. Chromatogr. A, 2008. 1215: p. 168-176.
38. N. Ochiai, K.S., Selectable one-dimensional or two-dimensional gas chromatography-olfactometry/mass spectrometry with preparative fraction collection for analysis of ultra-trace amounts of odor compounds. J. Chromatogr. A, 2011. 1218: p. 3180-3185.
39. John V. Seeley, N.J.M., Steven V. Bandurski, Stacy K. Seeley, and James D. McCurry, Microfluidic Deans Switch for Comprehensive Two-Dimensional Gas Chromatography. Anal. Chem, 2007. 79(5): p. 1840-1847.
40. Li, M.W.-H., et al., Microfabricated porous layer open tubular (PLOT) column. Lab on a Chip, 2019. 19(23): p. 3979-3987.
41. 中華民國環境部, NIEA-PA107 環境檢驗方法偵測極限測定指引. 2004.
42. Märk, T.D. and G.H. Dunn, Electron impact ionization. 2013: Springer Science & Business Media.
43. Siegel, J.A. and P.J. Saukko, Encyclopedia of forensic sciences. 2012: Academic Press.
44. Karasek, F.W. and R.E. Clement, Basic gas chromatography-mass spectrometry: principles and techniques. 2012: Elsevier.
45. Engewald, W., K. Dettmer-Wilde, and H. Rotzsche, Columns and stationary phases, in Practical Gas Chromatography: A Comprehensive Reference. 2014, Springer. p. 59-116.
46. Grob, K. and G. Grob, Capillary columns with immobilized stationary phases. Part 4: A moderately polar phase, OV‐1701. Journal of High Resolution Chromatography, 1982. 5(1): p. 13-18.
47. Grob, K. and G. Grob, Capiliary columns with immobilized stationary phases. Part 5: Determination of column bleeding; re‐silylation. Journal of High Resolution Chromatography, 1982. 5(7): p. 349-354.
48. Bakos, T., S. Rashkeev, and S. Pantelides, H 2 O and O 2 molecules in amorphous SiO 2: defect formation and annihilation mechanisms. Physical Review B, 2004. 69(19): p. 195206.
49. 呂秉祥, 自製除水及熱脫附儀串接氣相層析質譜儀用於連續監測大氣中有機污染物, in 化學系. 2022, 國立中央大學.
50. 施昱廷, 以氣相層析搭載電子捕捉偵測技術驗證自製前濃縮儀穩定性, in 化學系. 2023, 國立中央大學.
指導教授 王家麟 王介亨 審核日期 2024-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明