參考文獻 |
[1] G.E. Moore, "Cramming more components onto integrated circuits", Proceedings of the IEEE, 86 (1998) 82-85.
[2] O. Mohsen, A. Lueansaramwong, S. Valluri, V. Korampally, P. Piot, S. Chattopadhyay, "Field emission from silicon nanocones cathodes", 2018 IEEE Advanced Accelerator Concepts Workshop (AAC), (2018) 1-5.
[3] T. Basu, T. Som, "Probing local work function of electron emitting Si-nanofacets", Applied Surface Science, 418 (2017) 340-345.
[4] F. Xu, H. Wu, "Experimental study of water flow and heat transfer in silicon micro-pin-fin heat sinks", Journal of Heat Transfer, 140 (2018) 122401.
[5] Y. Zhang, A. Dembla, M.S. Bakir, "Silicon micropin-fin heat sink with integrated TSVs for 3-D ICs: Tradeoff analysis and experimental testing", IEEE Transactions on Components, Packaging and Manufacturing Technology, 3 (2013) 1842-1850.
[6] B. Shao, Z. Song, X. Chen, Y. Wu, Y. Li, C. Song, F. Yang, T. Song, Y. Wang, S.-T. Lee, "Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output", ACS Nano, 15 (2021) 7472-7481.
[7] B. Shao, Y. Wu, X. Chen, Z. Song, Y. Li, Z. Hong, F. Yang, T. Song, Y. Wang, B. Sun, "Electron‐selective passivation contacts for high‐efficiency nanostructured silicon hydrovoltaic devices", Advanced Materials Interfaces, 8 (2021) 2101213.
[8] Y. Qin, Y. Wang, Y. Liu, "Vertically aligned silicon nanowires with rough surface and its NO 2 sensing properties", Journal of Materials Science: Materials in Electronics, 27 (2016) 11319-11324.
[9] C. Samanta, A. Ghatak, A. Raychaudhuri, B. Ghosh, "ZnO/Si nanowires heterojunction array-based nitric oxide (NO) gas sensor with noise-limited detectivity approaching 10 ppb", Nanotechnology, 30 (2019) 305501.
[10] Y. Zhai, Y. Li, J. Ji, Z. Wu, Q. Wang, "Hot electron generation in silicon micropyramids covered with nanometer-thick gold films for near-infrared photodetectors", ACS Applied Nano Materials, 3 (2020) 149-155.
[11] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji, C. Ye, "Flexible Si/PEDOT: PSS hybrid solar cells", Nano Research, 8 (2015) 3141-3149.
[12] A.M. Itsuno, J.D. Phillips, S. Velicu, "Mid-wave infrared HgCdTe nBn photodetector", Applied Physics Letters, 100 (2012).
[13] P. Binetti, X. Leijtens, T. De Vries, Y. Oei, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, J. Van Campenhout, D. Van Thourhout, P. Van Veldhoven, "InP/InGaAs photodetector on SOI photonic circuitry", IEEE Photonics Journal, 2 (2010) 299-305.
[14] Y. An, A. Behnam, E. Pop, A. Ural, "Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions", Applied Physics Letters, 102 (2013).
[15] N. Van Toan, K. Ito, T.T.K. Tuoi, M. Toda, P.-H. Chen, M.F.M. Sabri, J. Li, T. Ono, "Micro-heat sink based on silicon nanowires formed by metal-assisted chemical etching for heat dissipation enhancement to improve performance of micro-thermoelectric generator", Energy Conversion and Management, 267 (2022) 115923.
[16] Y. Qin, Y. Wang, X. Sun, Y. Li, H. Xu, Y. Tan, Y. Li, T. Song, B. Sun, "Constant electricity generation in nanostructured silicon by evaporation‐driven water flow", Angewandte Chemie, 132 (2020) 10706-10712.
[17] F. Yu, G. Liu, Z. Chen, L. Zhang, X. Liu, Q. Zhang, L. Wu, X. Wang, "All-weather freshwater and electricity simultaneous generation by coupled solar energy and convection", ACS Applied Materials & Interfaces, 14 (2022) 40082-40092.
[18] Y. Qin, D. Liu, T. Zhang, Z. Cui, "Ultrasensitive silicon nanowire sensor developed by a special Ag modification process for rapid NH3 detection", ACS Applied Materials & Interfaces, 9 (2017) 28766-28773.
[19] S. Huang, B. Zhang, Y. Lin, C.-S. Lee, X. Zhang, "Compact biomimetic hair sensors based on single silicon nanowires for ultrafast and highly-sensitive airflow detection", Nano Letters, 21 (2021) 4684-4691.
[20] U. Ray, D. Banerjee, B. Das, N. Das, S. Sinha, K. Chattopadhyay, "Aspect ratio dependent cold cathode emission from vertically aligned hydrophobic silicon nanowires", Materials Research Bulletin, 97 (2018) 232-237.
[21] V. Kumar, S.K. Saxena, V. Kaushik, K. Saxena, A. Shukla, R. Kumar, "Silicon nanowires prepared by metal induced etching (MIE): good field emitters", RSC Advances, 4 (2014) 57799-57803.
[22] S.A. Moiz, A. Alahmadi, A.J. Aljohani, "Design of silicon nanowire array for PEDOT: PSS-silicon nanowire-based hybrid solar cell", Energies, 13 (2020) 3797.
[23] P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, Z.M. Wang, "Design and fabrication of silicon nanowires towards efficient solar cells", Nano Today, 11 (2016) 704-737.
[24] I. Mihalache, A. Radoi, R. Pascu, C. Romanitan, E. Vasile, M. Kusko, "Engineering graphene quantum dots for enhanced ultraviolet and visible light p-Si nanowire-based photodetector", ACS Applied Materials & Interfaces, 9 (2017) 29234-29247.
[25] C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, Y. Wu, "Core–shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors", Acs Nano, 8 (2014) 4015-4022.
[26] S. Misra, L. Yu, W. Chen, M. Foldyna, P.R. i Cabarrocas, "A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells", Journal of Physics D: Applied Physics, 47 (2014) 393001.
[27] A. Uesugi, T. Horita, K. Sugano, Y. Isono, "Vapor–liquid–solid growth of silicon nanowires from surface nanoholes formed with metal-assisted chemical etching", Japanese Journal of Applied Physics, 60 (2021) 055502.
[28] D. Yu, Y. Xing, Q. Hang, H. Yan, J. Xu, Z. Xi, S.-Q. Feng, "Controlled growth of oriented amorphous silicon nanowires via a solid–liquid–solid (SLS) mechanism", Physica E: Low-dimensional Systems and Nanostructures, 9 (2001) 305-309.
[29] T. Nguyen, C.H. Hsu, D.H. Lien, Y.S. Su, "Economical Silicon Nanowire Growth via Cooling Controlled Solid–Liquid–Solid Mechanism", Advanced Materials Interfaces, 10 (2023) 2202247.
[30] R.A. Puglisi, C. Bongiorno, S. Caccamo, E. Fazio, G. Mannino, F. Neri, S. Scalese, D. Spucches, A. La Magna, "Chemical vapor deposition growth of silicon nanowires with diameter smaller than 5 nm", ACS Omega, 4 (2019) 17967-17971.
[31] B. Liu, P. Huang, Z. Xie, Q. Huang, "Large-scale production of a silicon nanowire/graphite composites anode via the CVD method for high-performance lithium-ion batteries", Energy & Fuels, 35 (2021) 2758-2765.
[32] M. Naffeti, P.A. Postigo, R. Chtourou, M.A. Zaïbi, "Elucidating the effect of etching time key-parameter toward optically and electrically-active silicon nanowires", Nanomaterials, 10 (2020) 404.
[33] N. Chhetri, S. Haldar, S. Chatterjee, "Morphological and electrical study of p-type silicon nanowires synthesised by Ag-assisted electroless chemical etching", Materials Research Express, 6 (2020) 1250i1252.
[34] S.M. Thalluri, J. Borme, D. Xiong, J. Xu, W. Li, I. Amorim, P. Alpuim, J. Gaspar, H. Fonseca, L. Qiao, "Highly-ordered silicon nanowire arrays for photoelectrochemical hydrogen evolution: an investigation on the effect of wire diameter, length and inter-wire spacing", Sustainable Energy & Fuels, 2 (2018) 978-982.
[35] A.D. Refino, N. Yulianto, I. Syamsu, A.P. Nugroho, N.H. Hawari, A. Syring, E. Kartini, F. Iskandar, T. Voss, A. Sumboja, "Versatilely tuned vertical silicon nanowire arrays by cryogenic reactive ion etching as a lithium-ion battery anode", Scientific Reports, 11 (2021) 19779.
[36] F.J. Wendisch, M. Rey, N. Vogel, G.R. Bourret, "Large-scale synthesis of highly uniform silicon nanowire arrays using metal-assisted chemical etching", Chemistry of Materials, 32 (2020) 9425-9434.
[37] M. Rey, F.J. Wendisch, E.S.A. Goerlitzer, J.S.J. Tang, R.S. Bader, G.R. Bourret, N. Vogel, "Anisotropic silicon nanowire arrays fabricated by colloidal lithography", Nanoscale Advances, 3 (2021) 3634-3642.
[38] W. Wang, L. Gu, H. Qian, M. Zhao, X. Ding, X. Peng, J. Sha, Y. Wang, "Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries", Journal of Power Sources, 307 (2016) 410-415.
[39] R. Khare, M.A. More, D. Chakravarty, "Transformation of ZnO nanorods into nanotubes and their field emission studies", Modern Physics Letters B, 29 (2015) 1540044.
[40] Y. Zhang, H. Wang, Z. Liu, B. Zou, C. Duan, T. Yang, X. Zhang, C. Zheng, X. Zhang, "Optical absorption and photoelectrochemical performance enhancement in Si tube array for solar energy harvesting application", Applied Physics Letters, 102 (2013).
[41] C. Mu, Y. Yu, W. Liao, X. Zhao, D. Xu, X. Chen, D. Yu, "Controlling growth and field emission properties of silicon nanotube arrays by multistep template replication and chemical vapor deposition", Applied Physics Letters, 87 (2005).
[42] A. Morata, M. Pacios, G. Gadea, C. Flox, D. Cadavid, A. Cabot, A. Tarancón, "Large-area and adaptable electrospun silicon-based thermoelectric nanomaterials with high energy conversion efficiencies", Nature Communications, 9 (2018) 4759.
[43] Y.-L. Sun, X.-D. Zheng, W. Jevasuwan, N. Fukata, "Silicon Nanotubes fabricated by wet chemical etching of ZnO/Si core–shell nanowires", Nanomaterials, 10 (2020) 2535.
[44] N. Shpaisman, U. Givan, M. Kwiat, A. Pevzner, R. Elnathan, F. Patolsky, "Controlled synthesis of ferromagnetic semiconducting silicon nanotubes", The Journal of Physical Chemistry C, 116 (2012) 8000-8007.
[45] Z. Zhang, L. Liu, T. Shimizu, S. Senz, U. Gösele, "Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template", Nanotechnology, 21 (2009) 055603.
[46] A. Nan, X. Bai, S.J. Son, S.B. Lee, H. Ghandehari, "Cellular uptake and cytotoxicity of silica nanotubes", Nano Letters, 8 (2008) 2150-2154.
[47] Z. Li, Y. Chen, X. Zhu, M. Zheng, F. Dong, P. Chen, L. Xu, W. Chu, H. Duan, "Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching", Nanotechnology, 27 (2016) 365302.
[48] Y.Y. Kim, H.J. Kim, J.H. Jeong, J. Lee, J.H. Choi, J.Y. Jung, J.H. Lee, H. Cheng, K.W. Lee, D.G. Choi, "Facile Fabrication of Silicon Nanotube Arrays and Their Application in Lithium‐Ion Batteries", Advanced Engineering Materials, 18 (2016) 1349-1353.
[49] C. Wang, J. Wen, F. Luo, B. Quan, H. Li, Y. Wei, C. Gu, J. Li, "Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation", Journal of Materials Chemistry A, 7 (2019) 15113-15122.
[50] Y. Tseng, R. Gu, S. Cheng, "Design and fabrication of vertically aligned single-crystalline Si nanotube arrays and their enhanced broadband absorption properties", Applied Surface Science, 508 (2020) 145223.
[51] M.S. Choi, H.G. Na, A. Mirzaei, J.H. Bang, W. Oum, S. Han, S.-W. Choi, M. Kim, C. Jin, S.S. Kim, "Room-temperature NO2 sensor based on electrochemically etched porous silicon", Journal of Alloys and Compounds, 811 (2019) 151975.
[52] A.M. Alwan, A.B. Dheyab, "Room temperature CO2 gas sensors of AuNPs/mesoPSi hybrid structures", Applied Nanoscience, 7 (2017) 335-341.
[53] K. Nishio, S. Tagawa, T. Fukushima, H. Masuda, "Highly ordered nanoporous Si for negative electrode of rechargeable lithium-ion battery", Electrochemical and Solid-State Letters, 15 (2012) A41.
[54] S. Cho, H.Y. Jang, I. Jung, L. Liu, S. Park, "Synthesis of embossing Si nanomesh and its application as an anode for lithium ion batteries", Journal of Power Sources, 362 (2017) 270-277.
[55] S.H. Altinoluk, H.E. Ciftpinar, O. Demircioglu, F. Es, G. Baytemir, O. Akar, A. Aydemir, A. Sarac, T. Akin, R. Turan, "Light trapping by micro and nano-hole texturing of single-crystalline silicon solar cells", Energy Procedia, 92 (2016) 291-296.
[56] C. Deng, X. Tan, L. Jiang, Y. Tu, M. Ye, Y. Yi, "Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications", Optics Communications, 407 (2018) 199-203.
[57] J. Yang, L. Tang, W. Luo, J. Shen, D. Zhou, S. Feng, X. Wei, H. Shi, "Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors", ACS Applied Materials & Interfaces, 11 (2019) 30421-30429.
[58] P. Varasteanu, A. Radoi, O. Tutunaru, A. Ficai, R. Pascu, M. Kusko, I. Mihalache, "Plasmon-enhanced photoresponse of self-powered Si nanoholes photodetector by metal nanowires", Nanomaterials, 11 (2021) 2460.
[59] R. Liu, F. Zhang, C. Con, B. Cui, B. Sun, "Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching", Nanoscale Research Letters, 8 (2013) 1-8.
[60] S. Thiyagu, H. Syu, C. Hsueh, C. Liu, T. Lin, C. Lin, "Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic-inorganic solar cells, RSC Adv. 5 (2015) 13224–13233".
[61] X. Yang, F. Xi, X. Chen, S. Li, X. Wan, W. Ma, P. Dong, J. Duan, Y. Chang, "Porous Silicon Fabrication and Surface Cracking Behavior Research Based on Anodic Electrochemical Etching", Fuel Cells, 21 (2021) 52-57.
[62] A.S. Islam, M.A. Sobhan, A.B.M. Ismail, "Performance Enhancement of Bulk Heterojunction Hybrid Solar Cell Using Macroporous Silicon", Raj. Uni. J. Sc. Engn, 43 (2015).
[63] H. Kim, N. Cho, "Morphological and nanostructural features of porous silicon prepared by electrochemical etching", Nanoscale Research Letters, 7 (2012) 1-8.
[64] V. Lehmann, H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n‐type silicon", Journal of the Electrochemical Society, 137 (1990) 653.
[65] K. Ding, M. Zhang, J. Mao, P. Xiao, X. Zhang, D. Wu, X. Zhang, J. Jie, "High-resolution image patterned silicon wafer with inverted pyramid micro-structure arrays for decorative solar cells", Materials Today Energy, 18 (2020) 100493.
[66] C. Cozzi, G. Polito, L.M. Strambini, G. Barillaro, "Electrochemical preparation of in-silicon hierarchical networks of regular out-of-plane macropores interconnected by secondary in-plane pores through controlled inhibition of breakdown effects", Electrochimica Acta, 187 (2016) 552-559.
[67] J.-Y. Choi, C.B. Honsberg, "Sub-wavelength scale Si inverted pyramid fabrication with enhanced size control by using silica sphere lithography technique", Applied Sciences, 8 (2018) 1720.
[68] J. Wang, P. Dong, D. Di, J. Chen, C. Wang, H. Wang, X. Wu, "Antireflection characteristics of inverted nanopyramid arrays fabricated by low-cost nanosphere lithography technology", Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 227 (2013) 57-62.
[69] J. Xu, A.D. Refino, A. Delvallée, S. Seibert, C. Schwalb, P.E. Hansen, M. Foldyna, L. Siaudinyte, G. Hamdana, H.S. Wasisto, "Deep-reactive ion etching of silicon nanowire arrays at cryogenic temperatures", Applied Physics Reviews, 11 (2024).
[70] S. Wang, H. Liu, J. Han, "Comprehensive study of Au nano-mesh as a catalyst in the fabrication of silicon nanowires arrays by metal-assisted chemical etching", Coatings, 9 (2019) 149.
[71] C.Q. Lai, W. Zheng, W. Choi, C.V. Thompson, "Metal assisted anodic etching of silicon", Nanoscale, 7 (2015) 11123-11134.
[72] H.-S. Seo, X. Li, H.-D. Um, B. Yoo, J.-H. Kim, K.-P. Kim, Y.W. Cho, J.-H. Lee, "Fabrication of precisely controlled silicon wire and cone arrays by electrochemical etching", Materials Letters, 63 (2009) 2567-2569.
[73] R. Ning, Y. Jiang, Y. Zeng, H. Gong, J. Zhao, J. Weisse, X. Shi, T.M. Gill, X. Zheng, "On-demand production of hydrogen by reacting porous silicon nanowires with water", Nano Research, 13 (2020) 1459-1464.
[74] P.-J. Chien, T.-C. Wei, C.-Y. Chen, "High-speed and direction-controlled formation of silicon nanowire arrays assisted by electric field", Nanoscale Research Letters, 15 (2020) 1-8.
[75] P.S. Priambodo, N.R. Poespawati, D. Hartanto, "Solar Cell", Chapters, (2011).
[76] Y. Huang, H. Liang, Y. Zhang, S. Yin, C. Cai, W. Liu, T. Jia, "Vertical tip-to-tip interconnection p–n silicon nanowires for plasmonic hot electron-enhanced broadband photodetectors", ACS Applied Nano Materials, 4 (2021) 1567-1575.
[77] Q. Wu, G. Cen, Y. Liu, Z. Ji, W. Mai, "A simple-structured silicon photodetector possessing asymmetric Schottky junction for NIR imaging", Physics Letters A, 412 (2021) 127586.
[78] F. Hu, L. Wu, X. Dai, S. Li, M. Lu, J. Sun, "Achieving high-responsivity near-infrared detection at room temperature by nano-Schottky junction arrays via a black silicon/platinum contact approach", Photonics Research, 9 (2021) 1324-1329.
[79] D. Periyanagounder, P. Gnanasekar, P. Varadhan, J.-H. He, J. Kulandaivel, "High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode", Journal of Materials Chemistry C, 6 (2018) 9545-9551.
[80] C.-Y. Wu, Z.-Q. Pan, Y.-Y. Wang, C.-W. Ge, Y.-Q. Yu, J.-Y. Xu, L. Wang, L.-B. Luo, "Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector", Journal of Materials Chemistry C, 4 (2016) 10804-10811.
[81] H.J. Geipel, N. Hsieh, M.H. Ishaq, C.W. Koburger, F.R. White, "Composite silicide gate electrodes-interconnections for VLSI device technologies", IEEE Journal of Solid-State Circuits, 15 (1980) 482-489.
[82] M. Tsai, H. Chao, L. Ephrath, B. Crowder, A. Cramer, R. Bennett, C. Lucchese, M. Wordeman, "One‐Micron Polycide (WSi2 on Poly‐Si) MOSFET Technology", Journal of the Electrochemical Society, 128 (1981) 2207.
[83] M.E. Alperin, T.C. Hollaway, R.A. Haken, C.D. Gosmeyer, R.V. Karnaugh, W.D. Parmantie, "Development of the self-aligned titanium silicide process for VLSI applications", IEEE Journal of Solid-State Circuits, 20 (1985) 61-69.
[84] H. Iwai, T. Ohguro, S.-i. Ohmi, "NiSi salicide technology for scaled CMOS", Microelectronic Engineering, 60 (2002) 157-169.
[85] H.-F. Hsu, P.-C. Tsai, K.-C. Lu, "Single-crystalline chromium silicide nanowires and their physical properties", Nanoscale Research Letters, 10 (2015) 1-8.
[86] W.-J. Huang, S.-M. Yang, T.-T. Liao, K.-C. Lu, "Synthesis of morphology-improved single-crystalline iron silicide nanowires with enhanced physical characteristics", CrystEngComm, 23 (2021) 3270-3275.
[87] Y.-W. Ok, T.-Y. Seong, C.-J. Choi, K.-N. Tu, "Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing", Applied Physics Letters, 88 (2006).
[88] J.-Y. Lin, H.-M. Hsu, K.-C. Lu, "Growth of single-crystalline nickel silicide nanowires with excellent physical properties", CrystEngComm, 17 (2015) 1911-1916.
[89] C. Chuang, S. Cheng, "Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures", Nano Research, 7 (2014) 1592-1603.
[90] S. Lv, Z. Li, J. Liao, Z. Zhang, W. Miao, "Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters", Journal of Vacuum Science & Technology B, 33 (2015).
[91] M. Currie, S. Samavedam, T. Langdo, C. Leitz, E. Fitzgerald, "Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing", Applied physics letters, 72 (1998) 1718-1720.
[92] R.R. Grote, K. Padmaraju, B. Souhan, J.B. Driscoll, K. Bergman, R.M. Osgood, "10 Gb/s Error-Free Operation of All-Silicon Ion-Implanted-Waveguide Photodiodes at 1.55$mu { m m} $", IEEE Photonics Technology Letters, 25 (2012) 67-70.
[93] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection", Nanotechnology, 28 (2017) 275202.
[94] F. Hu, X.-Y. Dai, Z.-Q. Zhou, X.-Y. Kong, S.-L. Sun, R.-J. Zhang, S.-Y. Wang, M. Lu, J. Sun, "Black silicon Schottky photodetector in sub-bandgap near-infrared regime", Optics Express, 27 (2019) 3161-3168.
[95] F.L. Gonzalez, M.J. Gordon, "Enhancing near-infrared light absorption in PtSi thin films for Schottky barrier IR detectors using moth-eye surface structures", Optics Letters, 40 (2015) 1512-1515.
[96] A. Mehrfar, A. Eslami Majd, "Enhancement of the photoresponse in the platinum silicide photodetector by a graphene layer", Journal of Electrical and Computer Engineering Innovations (JECEI), 10 (2022) 363-370.
[97] B.-Y. Tsaur, M.M. Weeks, R. Trubiano, P.W. Pellegrini, T.-R. Yew, "IrSi Schottky-barrier infrared detectors with 10-mu m cutoff wavelength", IEEE Electron Device Letters, 9 (1988) 650-653.
[98] E. Kerimov, "Photoelectric and optical properties of Schottky-barrier photodiodes based on IrSi–Si", Russian Microelectronics, 45 (2016) 112-118.
[99] S. Zhu, M. Yu, G. Lo, D. Kwong, "Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications", Applied Physics Letters, 92 (2008).
[100] S. Roy, K. Midya, S. Duttagupta, D. Ramakrishnan, "Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation", Journal of Applied Physics, 116 (2014).
[101] L. Romano, J. Vila-Comamala, K. Jefimovs, M. Stampanoni, "Effect of isopropanol on gold assisted chemical etching of silicon microstructures", Microelectronic Engineering, 177 (2017) 59-65.
[102] M. Koyama, N. Shigemori, K. Ozawa, K. Tachi, K. Kakushima, O. Nakatsuka, K. Ohmori, K. Tsutsui, A. Nishiyama, N. Sugii, "Si/Ni-Silicide Schottky junctions with atomically flat interfaces using NiSi 2 source", 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC), (2011) 231-234.
[103] L. Wang, S.-J. He, K.-Y. Wang, H.-H. Luo, J.-G. Hu, Y.-Q. Yu, C. Xie, C.-Y. Wu, L.-B. Luo, "Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector", Nanotechnology, 29 (2018) 505203.
[104] S. Chaoudhary, A. Dewasi, V. Rastogi, R.N. Pereira, A. Sinopoli, B. Aïssa, A. Mitra, "Laser ablation fabrication of a p-nio/n-si heterojunction for broadband and self-powered UV–visible–nir photodetection", Nanotechnology, 33 (2022) 255202.
[105] Y. Wang, Y. Zhu, H. Gu, X. Wang, "Enhanced Performances of n-ZnO Nanowires/p-Si Heterojunctioned Pyroelectric Near–Infrared Photodetectors via the Plasmonic Effect", ACS Applied Materials & Interfaces, 13 (2021) 57750-57758.
[106] Y.-T. Wu, C.-W. Huang, C.-H. Chiu, C.-F. Chang, J.-Y. Chen, T.-Y. Lin, Y.-T. Huang, K.-C. Lu, P.-H. Yeh, W.-W. Wu, "Nickel/platinum dual silicide axial nanowire heterostructures with excellent photosensor applications", Nano Letters, 16 (2016) 1086-1091. |