博碩士論文 111827004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.219.239.111
姓名 王柏喬(Bo-Ciao Wang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 基於Wi-Fi通道頻率響應探討動態物體對多重路徑通道成份之干擾影響-從振幅及相位變化模型到應用
(Exploring the Impact of Dynamic Object Interference on Multipath Channel Components via Wi-Fi Channel Frequency Response: From Amplitude and Phase Variation Models to Applications)
相關論文
★ 麻醉監測技術進步與優化病人安全_應用小波頻譜分析麻醉動態自主神經反應★ 不同麻醉深度之相位-振幅耦合量測及強度比較
★ 設計及製作可攜式非侵入性心搏輸出量監測系統★ 開發可攜式十二導程心電圖和聲學雙功能系統於居家分析心臟電生理訊號
★ 應用非侵入性方法來探究透析過程中血流動力學變化及心血管疾病之預後★ 開發具深度學習應用於自動追蹤耳膜功能之數位耳鏡於中耳炎輔助系統
★ 反覆編曲結構音樂對人體生理訊號之影響★ 設計具低功耗無線傳輸及結合人工智慧判讀之長時間聽診監測系統
★ 實踐經驗模態分解於高度非穩態生理訊號之訊號特徵擷取★ Exploring Beat-to-Beat Photoplethysmography Features at the Upper and Lower Extremities as Potential Biomarkers for Early Diagnosis of Peripheral Arterial Occlusive Disease: A Comparative study with Ultrasound Doppler and Ankle-Brachial Index
★ 應用稀疏時頻表現式解析生理系統間非線性耦合機轉★ 基於功能性近紅外光腦光譜與腦電圖發展多模態腦活動無線監測系統
★ 脂質奈米顆粒在mRNA疫苗技術應用發展綜述★ 自12導程心電圖擷取P波特徵辨識竇性心律下之 心房顫動高風險病患
★ 探討以非侵入方式的影像心衝擊圖形態特徵來評估左心室射血分數 : 基於數學模型與臨床驗證的初步研究★ 發展可用於肺部疾病患者呼吸音監測之高解析加速度陣列感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 近年隨著物聯網(internet of thing,IOT)的蓬勃發展,Wi-Fi設備變得無所不在,也因此Wi-Fi訊號無論在偵測、辨識,或是感測領域上都成為熱門的研究議題,相關的研究如雨後春筍般出現。Wi-Fi標準協定下的正交分頻調變系統(Orthogonal frequency-division multiplexing,OFDM)結合多輸入多輸出系統(Multiple-Input Multiple-Output,MIMO)產生豐富且複雜的通道狀態資訊(channel state information,CSI),反映了訊號在空間中從發射端到接收端的傳播情況,例如:散射、衰弱、反射等多重路徑效應的影響,使得室內環境中的任何活動都會造成通道狀態資訊的變化。透過通道狀態資訊的特性及豐富的變化,加上非接觸、感測範圍廣、保護隱私、設備取得難度低等優勢,Wi-Fi訊號成為了環境感知的首選。然而,通道狀態資訊本身受到多重路徑效應影響,具有高雜訊及高複雜度的特性,不易直接從訊號上獲得有用的資訊。除此之外,Wi-Fi標準協定採用的正交分頻調變系統會導致通道狀態資訊的相位偏移。因此,進行相位校正及訊號特徵提取是通道狀態資訊應用的關鍵步驟。本研究從通道狀態資訊模型發想,分析正交分頻調變系統與多重路徑通訊模型對於通道狀態資訊的影響,透過不同的校正方程式降低正交分頻調變造成的相位偏移,並在模擬的實驗環境中探討多重路徑效應影響下振幅與相位的表現差異,最後在應用實例中證明通道狀態資訊的可行性。
摘要(英) In recent years, with the rapid development of the Internet of Things (IoT), Wi-Fi devices have become ubiquitous. Wi-Fi signals have become a popular research topic in the field of detection, recognition, and sensing. Research related to these topics increase rapidly. Under the Wi-Fi standard, Orthogonal Frequency-Division Multiplexing (OFDM), combined with Multiple-Input Multiple-Output (MIMO) systems, generates rich and complex Channel State Information (CSI). This reflects the signal′s propagation from the transmitter to the receiver in space, influenced by multipath effects such as scattering, fading, and reflection. Any activity in an indoor environment will cause changes in the CSI. The characteristics and rich variations of CSI, as well as advantages like non-contact sensing, wide sensing range, privacy protection, and low difficulty in obtaining equipment, make Wi-Fi signals the preferred choice for environmental sensing. However, the CSI itself is affected by the multipath effect, has high noise and high complexity characteristics, and it is difficult to extract useful information directly from the signal. Additionally, the OFDM system used in the Wi-Fi standard causes phase shifts in CSI. Therefore, phase correction and signal feature extraction are the key steps in applying CSI. This study, inspired by the CSI model, analyzes the impact of the OFDM system and the multipath communication model on CSI. Use different calibration equations to reduce the phase offset caused by OFDM, explores the differences in amplitude and phase performance under multipath effects in a simulated experimental environment and finally demonstrates the feasibility of CSI in practical applications.
關鍵字(中) ★ WiFi感測
★ 通道狀態資訊
★ 生理訊號監測
關鍵字(英) ★ Wi-Fi
★ channel state information
★ vital sign monitor
論文目次 摘要 i
Abstract ii
圖目錄 v
表目錄 vii
第一章 緒論 - 1 -
1-1 前言 - 1 -
1-2 研究動機與目的 - 1 -
1-3 本文架構 - 2 -
第二章 文獻探討 - 3 -
2-1 Wi-Fi技術介紹 - 3 -
2-1-1 OFDM - 4 -
2-1-2 MIMO - 5 -
2-1-3 CSI - 6 -
2-2 相關研究 - 8 -
2-2-1 偵測 - 8 -
2-2-2 辨識 - 10 -
2-2-3 感測 - 11 -
第三章 研究方法介紹 - 13 -
3-1 模型推導 - 13 -
3-1-1 Slow time behavior - 13 -
3-1-2 Fast time behavior - 14 -
3-2 Phase Calibration Method - 16 -
3-2-1 Linear Calibration - 16 -
3-2-2 Antenna subtraction - 17 -
3-3 資料清理 - 19 -
3-4 特徵提取 - 21 -
3-5 空間變化重建 - 22 -
第四章 實驗結果分析 - 24 -
4-1 實驗設計 - 24 -
4-2 模擬訊號驗證 - 24 -
4-2-1 單一線軌週期訊號模擬驗證 - 24 -
4-2-2 位移頻率驗證 - 28 -
4-2-3 位移幅度驗證 - 29 -
4-2-4 移動物與接收器距離驗證 - 31 -
4-2-5 雙線軌週期訊號模擬驗證 - 32 -
4-3 真實生理訊號驗證 - 33 -
4-3-1 模擬工作情景 - 34 -
4-3-2 模擬睡眠情景 - 35 -
第五章 結論與未來展望 - 37 -
5-1 結論 - 37 -
5-2 未來展望 - 37 -
參考文獻 - 38 -
參考文獻 1.Wang, X., L. Gao, and S. Mao, CSI phase fingerprinting for indoor localization with a deep learning approach. IEEE Internet of Things Journal, 2016. 3(6): p. 1113-1123.
2.Sen, S., et al. You are facing the Mona Lisa: Spot localization using PHY layer information. in Proceedings of the 10th international conference on Mobile systems, applications, and services. 2012.
3.Yang, Z., Z. Zhou, and Y. Liu, From RSSI to CSI: Indoor localization via channel response. ACM Computing Surveys (CSUR), 2013. 46(2): p. 1-32.
4.Hernandez, S.M. and E. Bulut, Wifi sensing on the edge: Signal processing techniques and challenges for real-world systems. IEEE Communications Surveys & Tutorials, 2022. 25(1): p. 46-76.
5.Xiong, J. and K. Jamieson. {ArrayTrack}: A {Fine-Grained} indoor location system. in 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13). 2013.
6.Kotaru, M., et al. Spotfi: Decimeter level localization using wifi. in Proceedings of the 2015 ACM conference on special interest group on data communication. 2015.
7.Li, X., et al. Dynamic-MUSIC: Accurate device-free indoor localization. in Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing. 2016.
8.Vasisht, D., S. Kumar, and D. Katabi. {Decimeter-Level} localization with a single {WiFi} access point. in 13th USENIX symposium on networked systems design and implementation (NSDI 16). 2016.
9.Wang, Y., K. Wu, and L.M. Ni, Wifall: Device-free fall detection by wireless networks. IEEE Transactions on Mobile Computing, 2016. 16(2): p. 581-594.
10.Wang, H., et al., RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices. IEEE Transactions on Mobile Computing, 2016. 16(2): p. 511-526.
11.Xiao, J., et al. Pilot: Passive device-free indoor localization using channel state information. in 2013 IEEE 33rd International Conference on Distributed Computing Systems. 2013. IEEE.
12.Wu, C., et al., Non-invasive detection of moving and stationary human with WiFi. IEEE Journal on Selected Areas in Communications, 2015. 33(11): p. 2329-2342.
13.Qian, K., et al. PADS: Passive detection of moving targets with dynamic speed using PHY layer information. in 2014 20th IEEE international conference on parallel and distributed systems (ICPADS). 2014. IEEE.
14.Zeng, Y., P.H. Pathak, and P. Mohapatra. WiWho: WiFi-based person identification in smart spaces. in 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). 2016. IEEE.
15.Xin, T., et al. Freesense: Indoor human identification with Wi-Fi signals. in 2016 IEEE Global Communications Conference (GLOBECOM). 2016. IEEE.
16.Virmani, A. and M. Shahzad. Position and orientation agnostic gesture recognition using WiFi. in Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. 2017.
17.Li, H., et al. WiFinger: Talk to your smart devices with finger-grained gesture. in Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2016.
18.He, W., et al. WiG: WiFi-based gesture recognition system. in 2015 24th International Conference on Computer Communication and Networks (ICCCN). 2015. IEEE.
19.Seel, T., J. Raisch, and T. Schauer, IMU-based joint angle measurement for gait analysis. Sensors, 2014. 14(4): p. 6891-6909.
20.Wang, W., A.X. Liu, and M. Shahzad. Gait recognition using wifi signals. in Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing. 2016.
21.Gao, Q., et al., CSI-based device-free wireless localization and activity recognition using radio image features. IEEE Transactions on Vehicular Technology, 2017. 66(11): p. 10346-10356.
22.Zheng, X., et al. Smokey: Ubiquitous smoking detection with commercial WiFi infrastructures. in IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. 2016. IEEE.
23.Wang, F., W. Gong, and J. Liu, On spatial diversity in WiFi-based human activity recognition: A deep learning-based approach. IEEE Internet of Things Journal, 2018. 6(2): p. 2035-2047.
24.Adib, F. and D. Katabi. See through walls with WiFi! in Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM. 2013.
25.Vakalis, S., L. Gong, and J.A. Nanzer, Imaging with wifi. IEEE Access, 2019. 7: p. 28616-28624.
26.Geng, J., D. Huang, and F. De la Torre, Densepose from wifi. arXiv preprint arXiv:2301.00250, 2022.
27.Liu, X., et al. Wi-sleep: Contactless sleep monitoring via wifi signals. in 2014 IEEE Real-Time Systems Symposium. 2014. IEEE.
28.Bao, N., et al., Wi-breath: A WiFi-based contactless and real-time respiration monitoring scheme for remote healthcare. IEEE journal of biomedical and health informatics, 2022. 27(5): p. 2276-2285.
29.Hu, J., et al. ResFi: WiFi-enabled device-free respiration detection based on deep learning. in 2022 IEEE 17th International Conference on Control & Automation (ICCA). 2022. IEEE.
30.Wang, X., C. Yang, and S. Mao. PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. in 2017 IEEE 37th international conference on distributed computing systems (ICDCS). 2017. IEEE.
31.Liu, J., et al. Tracking vital signs during sleep leveraging off-the-shelf wifi. in Proceedings of the 16th ACM international symposium on mobile ad hoc networking and computing. 2015.
32.Li, H., et al., Wi-motion: A robust human activity recognition using WiFi signals. IEEE Access, 2019. 7: p. 153287-153299.
33.Carlson, A.B., communication systems: an introduction to signal noise in electrical communication. 2002.
34.Zhang, D., et al., Calibrating phase offsets for commodity WiFi. IEEE Systems Journal, 2019. 14(1): p. 661-664.
35.Jiang, Z., et al., Eliminating the barriers: Demystifying wi-fi baseband design and introducing the picoscenes wi-fi sensing platform. IEEE Internet of Things Journal, 2021. 9(6): p. 4476-4496.
指導教授 林澂(Chen Lin) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明