參考文獻 |
1. Van Donk, S., Janssen, A. H., Bitter, J. H. & de Jong, K. P. Generation, characterization, and
impact of mesopores in zeolite catalysts. Catalysis Reviews 45, 297–319 (2003).
2. Bhatia,S.ZeoliteCatalysts:PrinciplesandApplications(ChemicalRubberCompanyPress,2020).
3. Kuppler, R. J. et al. Potential applications of metal-organic frameworks. Coordination Chemistry
Reviews 253, 3042–3066 (2009).
4. Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nature
Chemistry 4, 83–89 (2012).
5. Martin,R.L.,Lin,L.-C.,Jariwala, K., Smit, B. &Haranczyk,M.Mail-ordermetal–organicframe
works (MOFs): Designing isoreticular MOF-5 analogues comprising commercially available or
ganic molecules. The Journal of Physical Chemistry C 117, 12159–12167 (2013).
6. Lin,R.-B., Xiang, S., Xing, H., Zhou, W. & Chen, B. Exploration of porous metal–organic frame
works for gas separation and purification. Coordination Chemistry Reviews 378, 87–103 (2019).
7. Lin, R.-B., Xiang, S., Zhou, W. & Chen, B. Microporous metal-organic framework materials for
gas separation. Chem 6, 337–363 (2020).
8. Marsh, H. &Reinoso, F. R. Activated carbon (Elsevier, 2006).
9. Reza,M.S.etal. Preparation of activated carbon from biomass and its’applications in water and
gas purification, a review. Arab Journal of Basic and Applied Sciences 27, 208–238 (2020).
10. Gregg, S. J., Sing, K. S. W. & Salzberg, H. Adsorption surface area and porosity. Journal of The
Electrochemical Society 114, 279Ca (1967).
11. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).
12. VanDerVoort,P.,Leus,K.&DeCanck,E.IntroductiontoPorousMaterials(JohnWiley&Sons,
2019).
13. Ishizaki, K., Komarneni, S. & Nanko, M. Porous Materials: Process technology and applications
(Springer Science & Business Media, 2013).
14. Thomas,J. M. &Thomas,W.J. Principles and Practice of Heterogeneous Catalysis (John Wiley
&Sons, 2014).
15. Perego,C.&Millini,R.Porousmaterialsincatalysis:challengesformesoporousmaterials.Chem
ical Society Reviews 42, 3956–3976 (2013).
16. Alkordi, M. H., Liu, Y., Larsen, R. W., Eubank, J. F. & Eddaoudi, M. Zeolite-like metal- organic
frameworks as platforms for applications: on metalloporphyrin-based catalysts. Journal of the
American Chemical Society 130, 12639–12641 (2008).
17. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2
separation. Nature 495, 80–84 (2013).
18. Bae, Y.-S. & Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide
separation and capture. Angewandte Chemie International Edition 50, 11586–11596 (2011).
19. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. & Sing, K. Adsorption by Powders and
Porous Solids: Principles, Methodology and Applications (Academic Press, 2013).
20. Kang, D. W. et al. Emerging porous materials and their composites for NH3 gas removal. Ad
vanced Science 7, 2002142 (2020).
21. Khabazipour, M. & Anbia, M. Removal of hydrogen sulfide from gas streams using porous ma
terials: A review. Industrial & Engineering Chemistry Research 58, 22133–22164 (2019).
22. Zhou,J.&Wang,B.Emergingcrystalline porous materials as a multifunctional platform for elec
trochemical energy storage. Chemical Society Reviews 46, 6927–6945 (2017).
23. Liu, C., Li, F., Ma, L.-P. & Cheng, H.-M. Advanced Materials for energy storage. Advanced Ma
terials 22, E28–E62 (2010).
24. Frackowiak, E. Carbon materials for supercapacitor application. Physical Chemistry Chemical
Physics 9, 1774–1785 (2007).
25. Sun, M.-H. et al. Applications of hierarchically structured porous materials from energy stor
age and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.
Chemical Society Reviews 45, 3479–3563 (2016).
26. Wu,L.,Li, Y., Fu, Z. & Su, B.-L. Hierarchically structured porous materials: Synthesis strategies
and applications in energy storage. National science review 7, 1667–1701 (2020).
27. Wu,Y.&Weckhuysen,B.M.Separationandpurification of hydrocarbons with porous materials.
Angewandte Chemie International Edition 60, 18930–18949 (2021).
28. Morris, R. E. Grown into shape. Nature Chemistry 3, 347–348 (2011).
29. James, S. L. Metal-organic frameworks. Chemical Society Reviews 32, 276–288 (2003).
30. Makiura, R. et al. Surface nano-architecture of a metal–organic framework. Nature Materials 9,
565–571 (2010).
31. Eddaoudi,M.etal.Systematicdesignofporesize andfunctionality in isoreticular MOFs and their
application in methane storage. Science 295, 469–472 (2002).
32. Zhao,D.,Timmons,D.J.,Yuan,D.&Zhou,H.-C.Tuningthetopologyandfunctionalityofmetal
organic frameworks by ligand design. Accounts of Chemical Research 44, 123–133 (2011).
33. Chen, L., Luque, R. & Li, Y. Controllable design of tunable nanostructures inside metal–organic
frameworks. Chemical Society Reviews 46, 4614–4630 (2017).
34. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally
stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).
35. Zhu, Q.-L., Li, J. & Xu, Q. Immobilizing metal nanoparticles to metal–organic frameworks with
size and location control for optimizing catalytic performance. Journal of the American Chemical
Society 135, 10210–10213 (2013).
36. Horcajada, P. et al. Metal–organic frameworks as efficient materials for drug delivery. Ange
wandte Chemie 118, 6120–6124 (2006).
37. Medishetty,R.,Zaręba, J. K., Mayer, D., Samoć, M.&Fischer,R.A.Nonlinearoptical properties,
upconversion and lasing in metal–organic frameworks. Chemical Society Reviews 46, 4976–5004
(2017).
38. Morozan, A. & Jaouen, F. Metal organic frameworks for electrochemical applications. Energy &
Environmental Science 5, 9269–9290 (2012).
39. Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chemical Reviews
112, 1105–1125 (2012).
40. Férey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and
surface area. Science 309, 2040–2042 (2005).
41. Farha, O. K. et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the
limit? Journal of the American Chemical Society 134, 15016–15021 (2012).
42. Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh
surface area and gas storage capacities. Nature Chemistry 2, 944–948 (2010).
43. Murray,L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chemical
Society Reviews 38, 1294–1314 (2009).
44. He,Y., Zhou, W., Qian, G. & Chen, B. Methane storage in metal–organic frameworks. Chemical
Society Reviews 43, 5657–5678 (2014).
45. Millward, A. R. & Yaghi, O. M. Metal- organic frameworks with exceptionally high capacity for
storage of carbon dioxide at room temperature. Journal of the American Chemical Society 127,
17998–17999 (2005).
46. Wang, Q. M. et al. Metallo-organic molecular sieve for gas separation and purification. Microp
orous and Mesoporous Materials 55, 217–230 (2002).
47. Snurr, R. Q., Hupp, J. T. & Nguyen, S. T. Prospects for nanoporous metal-organic materials in
advanced separations processes. American Institute of Chemical Engineers Journal 50, 1090
1095 (2004).
48. Pan,L., Olson, D. H., Ciemnolonski, L. R., Heddy, R. & Li, J. Separation of hydrocarbons with a
microporous metal–organic framework. Angewandte Chemie International Edition 45, 616–619
(2006).
49. Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic
frameworks. Chemical Society Reviews 38, 1477–1504 (2009).
50. Britt, D., Furukawa, H., Wang, B., Glover, T. G. & Yaghi, O. M. Highly efficient separation of
carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the
National Academy of Sciences 106, 20637–20640 (2009).
51. Finsy, V. et al. Separation of CO2/CH4 mixtures with the MIL-53 (Al) metal–organic framework.
Microporous and Mesoporous Materials 120, 221–227 (2009).
52. DeCoste, J. B. & Peterson, G. W. Metal–organic frameworks for air purification of toxic chemi
cals. Chemical Reviews 114, 5695–5727 (2014).
53. Li, L. et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Sci
ence 362, 443–446 (2018).
54. Moghadam, P. Z. et al. Development of a Cambridge Structural Database subset: a collection of
metal–organic frameworks for past, present, and future. Chemistry of Materials 29, 2618–2625
(2017).
55. Chung, Y. G. et al. Advances, updates, and analytics for the computation-ready, experimental
metal–organic framework database: CoRE MOF 2019. Journal of Chemical & Engineering Data
64, 5985–5998 (2019).
56. Thommes, M. in Nanoporous Materials: Science and Engineering 317–364 (World Scientific,
2004).
57. Thommes, M. Physical adsorption characterization of nanoporous materials. Chemie Ingenieur
Technik 82, 1059–1073 (2010).
58. Xiong, Q., Baychev, T. G. & Jivkov, A. P. Review of pore network modelling of porous me
dia: Experimental characterisations, network constructions and applications to reactive transport.
Journal of Contaminant Hydrology 192, 101–117 (2016).
59. Song,D.&Li,J.Effectofcatalystporesizeonthecatalytic performance of silica supported cobalt
Fischer–Tropsch catalysts. Journal of Molecular Catalysis A: Chemical 247, 206–212 (2006).
60. Abbaslou, R. M. M., Soltan, J. & Dalai, A. K. Effects of nanotubes pore size on the catalytic per
formances ofiron catalysts supported on carbon nanotubes for Fischer–Tropsch synthesis. Applied
Catalysis A: General 379, 129–134 (2010).
61. Yuan, P. et al. Effect of pore diameter and structure of mesoporous sieve supported catalysts on
hydrodesulfurization performance. Chemical Engineering Science 111, 381–389 (2014).
62. Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distri
butions in porous substances. I. Computations from nitrogen isotherms. Journal of the American
Chemical Society 73, 373–380 (1951).
63. Horváth,G.&Kawazoe,K.Methodforthecalculationofeffectiveporesizedistributioninmolec
ular sieve carbon. Journal of Chemical Engineering of Japan 16, 470–475 (1983).
64. Saito,A.&Foley,H.Curvatureandparametricsensitivity in models for adsorption in micropores.
American Institute of Chemical Engineers Journal 37, 429–436 (1991).
65. Lastoskie,C., Gubbins, K.E.&Quirke,N.Poresizedistribution analysis of microporous carbons:
a density functional theory approach. The Journal of Physical Chemistry 97, 4786–4796 (1993).
66. Jagiello, J. & Olivier, J. P. A simple two-dimensional NLDFT model of gas adsorption in finite
carbon pores. Application to pore structure analysis. The Journal of Physical Chemistry C 113,
19382–19385 (2009).
67. Tarazona, P. Free-energy density functional for hard spheres. Physical Review A 31, 2672 (1985).
68. Tarazona, P., Marconi, U. M. B. & Evans, R. Phase equilibria of fluid interfaces and confined
fluids: non-local versus local density functionals. Molecular Physics 60, 573–595 (1987).
69. Jaroniec,M.,Kruk,M.,Olivier, J. P. &Koch,S.inStudiesinSurfaceScienceandCatalysis71–80
(Elsevier, 2000).
70. Kruk,M.&Jaroniec, M. Accurate method for calculating mesopore size distributions from argon
adsorption data at 87 K developed using model MCM-41 materials. Chemistry of Materials 12,
222–230 (2000).
71. Lowell, S., Shields, J. E., Thomas, M. A. & Thommes, M. Characterization of Porous Solids and
Powders: Surface area, Pore size and Density (Springer Science & Business Media, 2006).
72. Cohan,L.H.Sorptionhysteresis and the vapor pressure of concave surfaces. Journal of the Amer
ican Chemical Society 60, 433–435 (1938).
73. Broekhoff, J. & De Boer, J. Studies on pore systems in catalysts: IX. Calculation of pore distri
butions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical
pores A. Fundamental equations. Journal of Catalysis 9, 8–14 (1967).
74. Broekhoff, J. & De Boer, J. Studies on pore systems in catalysts: X. Calculations of pore distri
butions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical
pores B. Applications. Journal of Catalysis 9, 15–27 (1967).
75. Kruk, M., Jaroniec, M. & Sayari, A. Application of large pore MCM-41 molecular sieves to
improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267–6273
(1997).
76. Huang, B., Bartholomew, C. H. & Woodfield, B. F. Improved calculations of pore size distribu
tion for relatively large, irregular slit-shaped mesopore structure. Microporous and Mesoporous
Materials 184, 112–121 (2014).
77. Villarroel-Rocha, J., Barrera, D. & Sapag, K. Introducing a self-consistent test and the correspond
ing modification in the Barrett, Joyner and Halenda method for pore-size determination. Microp
orous and Mesoporous Materials 200, 68–78 (2014).
78. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. The
Bulletin of Mathematical Biophysics 5, 115–133 (1943).
79. Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature’s missing ternary
oxide compounds using machine learning and density functional theory. Chemistry of Materials
22, 3762–3767 (2010).
80. Rajan, K. Materials informatics. Materials Today 8, 38–45 (2005).
81. Xia, R. & Kais, S. Quantum machine learning for electronic structure calculations. Nature Com
munications 9, 4195 (2018).
82. Stein,H.S.,Guevarra,D.,Newhouse,P.F.,Soedarmadji,E.&Gregoire,J.M.Machinelearningof
optical properties of materials–predicting spectra from images and images from spectra. Chemical
Science 10, 47–55 (2019).
83. Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal conductivity
using a molecular design algorithm. NPJ Computational Materials 5, 66 (2019).
84. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems 25 (2012).
85. Ren,S.,He,K.,Girshick,R.&Sun,J.Fasterr-cnn:Towardsreal-timeobjectdetection with region
proposal networks. Advances in Neural Information Processing Systems 28 (2015).
86. Vaswani, A. et al. Attention is all you need. Advances in Neural Information Processing Systems
30 (2017).
87. Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural
Computation 18, 1527–1554 (2006).
88. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
89. Park, W. B. et al. Classification of crystal structure using a convolutional neural network. Inter
national Union of Crystallography Journal 4, 486–494 (2017).
90. Ryan, K., Lengyel, J. & Shatruk, M. Crystal structure prediction via deep learning. Journal of the
American Chemical Society 140, 10158–10168 (2018).
91. Groen, J. C., Peffer, L. A. & Pérez-Ramı́rez, J. Pore size determination in modified micro-and
mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and
Mesoporous Materials 60, 1–17 (2003).
92. Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications
(Elsevier, 2023).
93. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state
calculations by fast computing machines. The Journal of Chemical Physics 21, 1087–1092(1953).
94. Hastings,W.K.MonteCarlosamplingmethodsusingMarkovchainsandtheirapplications(1970).
95. Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software
for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation 42, 81–101
(2016).
96. Humphrey,W.,Dalke,A.&Schulten,K.VMD:visualmoleculardynamics.JournalofMolecular
Graphics 14, 33–38 (1996).
97. Dubbeldam, D., Calero, S. & Vlugt, T. J. iRASPA: GPU-accelerated visualization software for
materials scientists. Molecular Simulation 44, 653–676 (2018).
98. Rappé, A. K., Casewit, C. J., Colwell, K., Goddard III, W. A. & Skiff, W. M. UFF, a full periodic
table force field for molecular mechanics and molecular dynamics simulations. Journal of the
American Chemical Society 114, 10024–10035 (1992).
99. Bird, R. B. Transport phenomena. Applied Mechanics Reviews 55, R1–R4 (2002).
100. Halsey, G. Physical adsorption on non-uniform surfaces. The Journal of Chemical Physics 16,
931–937 (1948).
101. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools
for high-throughput geometry-based analysis of crystalline porous materials. Microporous and
Mesoporous Materials 149, 134–141 (2012).
102. Lin, J. Divergence measures based on the Shannon entropy. IEEE Transactions on Information
theory 37, 145–151 (1991).
103. Kullback, S. &Leibler, R. A. On information and sufficiency. The Annals of Mathematical Statis
tics 22, 79–86 (1951).
104. Shannon, C. E. A mathematical theory of communication. The Bell System Technical Journal 27,
379–423 (1948).
105. Arora, R., Basu, A., Mianjy, P. & Mukherjee, A. Understanding deep neural networks with recti
fied linear units. arXiv preprint arXiv:1611.01491 (2016).
106. Denker, J. & LeCun, Y. Transforming neural-net output levels to probability distributions. Ad
vances in Neural Information Processing Systems 3 (1990).
107. Grosse, I. et al. Analysis of symbolic sequences using the Jensen-Shannon divergence. Physical
Review E 65, 041905 (2002). |