參考文獻 |
1. Kashani, R.G., et al., Shortwave infrared otoscopy for diagnosis of middle ear effusions: A machine-learning-based approach. Scientific Reports, 2021. 11(1): p. 12509.
2. Habib, A.-R., et al., Evaluating the generalizability of deep learning image classification algorithms to detect middle ear disease using otoscopy. Scientific reports, 2023. 13(1): p. 5368.
3. Fang, T.Y., et al., Algorithm-Driven Tele-otoscope for Remote Care for Patients With Otitis Media. Otolaryngol Head Neck Surg, 2024. 170(6): p. 1590-1597.
4. Suresh, K., et al., Generation of synthetic tympanic membrane images: Development, human validation, and clinical implications of synthetic data. PLOS Digit Health, 2023. 2(2): p. e0000202.
5. Shaikh, N., et al., Development and Validation of an Automated Classifier to Diagnose Acute Otitis Media in Children. JAMA Pediatr, 2024. 178(4): p. 401-407.
6. Zeng, J., et al., A Deep Learning Approach to Predict Conductive Hearing Loss in Patients With Otitis Media With Effusion Using Otoscopic Images. JAMA Otolaryngol Head Neck Surg, 2022. 148(7): p. 612-620.
7. Rosenfeld, R.M., et al., Clinical Practice Guideline: Otitis Media with Effusion (Update). Otolaryngol Head Neck Surg, 2016. 154(1 Suppl): p. S1-s41.
8. 劉得懿 and 王拔群, 內視鏡內嵌式軟骨鼓室成形術:單一醫院經驗. 台灣耳鼻喉頭頸外科雜誌, 2021. 56(4): p. 223-229.
9. Wang, P.C., et al., Incidence and recurrence of acute otitis media in Taiwan′s pediatric population. Clinics (Sao Paulo), 2011. 66(3): p. 395-9.
10. Teele, D.W., J.O. Klein, and B. Rosner, Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. J Infect Dis, 1989. 160(1): p. 83-94.
11. Minor, L.B., et al., Sound- and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch Otolaryngol Head Neck Surg, 1998. 124(3): p. 249-58.
12. Minor, L.B., et al., Dehiscence of bone overlying the superior canal as a cause of apparent conductive hearing loss. Otol Neurotol, 2003. 24(2): p. 270-8.
13. 方麗娟, 洪朝明, and 黃世鴻, 耳硬化症─25年鐙骨手術經驗. 台灣耳鼻喉頭頸外科雜誌, 2011. 46(6): p. 304-309.
14. Ahmad, S.W. and G.V. Ramani, Hearing loss in perforations of the tympanic membrane. J Laryngol Otol, 1979. 93(11): p. 1091-8.
15. Mehta, R.P., et al., Determinants of Hearing Loss in Perforations of the Tympanic Membrane. Otology & Neurotology, 2006. 27(2): p. 136-143.
16. Hsu, C.Y., et al., A computer program to calculate the size of tympanic membrane perforations. Clin Otolaryngol Allied Sci, 2004. 29(4): p. 340-2.
17. Black, J., S. Hickey, and P. Wormald, An analysis of the results of myringoplasty in children. International journal of pediatric otorhinolaryngology, 1995. 31(1): p. 95-100.
18. Kolluru, K., S. Kumar, and P. Upadhyay, A Study of Correlation Between Tympanic Membrane Perforation Size With Hearing Loss in Patients With Inactive Mucosal Chronic Otitis Media. Otol Neurotol, 2021. 42(1): p. e40-e44.
19. Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. in Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. 2015. Springer.
20. He, K., et al. Mask r-cnn. in Proceedings of the IEEE international conference on computer vision. 2017.
21. Girshick, R., et al. Rich feature hierarchies for accurate object detection and semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
22. Girshick, R. Fast r-cnn. in Proceedings of the IEEE international conference on computer vision. 2015.
23. Ren, S., et al., Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 2015. 28.
24. Pham, V.T., et al., EAR-UNet: A deep learning-based approach for segmentation of tympanic membranes from otoscopic images. Artif Intell Med, 2021. 115: p. 102065.
25. Pham, V.-T., et al., Tympanic membrane segmentation in otoscopic images based on fully convolutional network with active contour loss. Signal, Image and Video Processing, 2021. 15(3): p. 519-527.
26. Kim, T., et al., Development of ResNet152 UNet++-Based Segmentation Algorithm for the Tympanic Membrane and Affected Areas. IEEE Access, 2023. 11: p. 56225-56234.
27. Seok, J., et al., The semantic segmentation approach for normal and pathologic tympanic membrane using deep learning. BioRxiv, 2019: p. 515007.
28. Park, Y.S., et al., Deep Learning Techniques for Ear Diseases Based on Segmentation of the Normal Tympanic Membrane. Clin Exp Otorhinolaryngol, 2023. 16(1): p. 28-36.
29. Khan, M.A., et al., Automatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networks. Neural Netw, 2020. 126: p. 384-394.
30. Tran, T.-T., et al., Development of an Automatic Diagnostic Algorithm for Pediatric Otitis Media. Otology & Neurotology, 2018. 39(8): p. 1060-1065.
31. Byun, H., et al., Automatic Prediction of Conductive Hearing Loss Using Video Pneumatic Otoscopy and Deep Learning Algorithm. Ear Hear, 2022. 43(5): p. 1563-1573.
32. Kim, T., et al., Toward Better Ear Disease Diagnosis: A Multi-Modal Multi-Fusion Model Using Endoscopic Images of the Tympanic Membrane and Pure-Tone Audiometry. IEEE Access, 2023. 11: p. 116721-116731.
33. CARHART, R., CLINICAL APPLICATION OF BONE CONDUCTION AUDIOMETRY. Archives of Otolaryngology, 1950. 51(6): p. 798-808.
34. SHEEHY, J.L. and W.F. HOUSE, Tympanosclerosis. Archives of Otolaryngology, 1962. 76(2): p. 151-157.
35. Voss, S.E., et al., Middle-ear function with tympanic-membrane perforations. II. A simple model. J Acoust Soc Am, 2001. 110(3 Pt 1): p. 1445-52.
36. Voss, S.E., et al., Middle-ear function with tympanic-membrane perforations. I. Measurements and mechanisms. J Acoust Soc Am, 2001. 110(3 Pt 1): p. 1432-44. |