博碩士論文 108324016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.12.151.184
姓名 龔成浩(Cheng-Hao Kung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鈷擴散阻障層對碲化鍺熱電模組性質與 界面穩定度影響之研究
(Effect of Cobalt Diffusion Barrier on Thermoelectric Property of GeTe Thermoelectric Joint for Enhanced Performance and Thermal Stability)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 在面對全球性氣候暖化危機的迫切需要下,實現淨零碳排放和碳中和已成為一項全球性的共同目標。不排放污染、結構簡單以及能夠將來自自然界、工業和汽車的廢熱轉換為電能的特點使得熱電發電裝置成為一項具有前景的技術。對於中溫區間段(200-500 oC)塊材熱電模組來說,高溫導致的原子擴散將影響模組的性能。本研究旨在發現加入鈷(Co)擴散屏障層能增強p型GeTe塊材的熱電性能,並探討影響模組性能的界面反應,因為模組內熱電材料跟電極之間的穩定連接對於確保熱電裝置的可靠性至關重要。透過分析GeTe的晶體結構及熱電性值的結果,表現出在添加Co擴散阻障層後GeTe的熱電效能(zT)值顯著增加。藉由電子微探儀(EPMA)分析,發現Co會朝GeTe擴散並反應出Co-Te界金屬化合物。在經歷了長時間熱處理測試後,銅電極與GeTe之間的界面接觸電阻有明顯增加。將Co阻障層電鍍到GeTe再經過長期熱處理後,電導率有所提高但材料的熱導率卻降低,發生這樣的改變是因為Co原子已經擴散到GeTe晶格中的空缺位置,造成聲子散射從而影響到熱導率。最後從結果發現添加Co阻障層並不會降低zT值,相反地電鍍Co阻障層能使p型GeTe的zT值增加56%。此外本研究強調的是探討GeTe zT值的提升,而不是追求極高的峰值。
摘要(英) Achieving net zero carbon emissions and carbon neutrality has emerged as a global imperative in addressing the climate crisis. The qualities like no emission pollution, simple structure, and the ability to convert waste heat generated from nature, industry, and automobiles into electrical energy make thermoelectric power generation devices a promising technology. For mid-temperature bulk thermoelectric modules, the diffusion of atoms induced by higher temperature will affects the module’s performance. This study investigates the influence on thermoelectric properties of p-type GeTe after integrating cobalt (Co) diffusion barrier and focuses on the interfacial reactions in GeTe joint that degrade thermoelectric performance. It is essential to establish stable interconnections in the joint for ensuring the reliability of the device. The research highlights the significantly increased the figure of merit (zT) values of GeTe after adding of Co diffusion barrier by examining its improved thermoelectric properties. The diffusion of Co into GeTe and the formation of Co-Te intermetallic compounds were revealed through EPMA analysis. There is a substantial increase in contact resistivity of the GeTe joint after aging. However, electrical conductivity improves and thermal conductivity decreases after depositing Co and subjecting it to long-term aging. This improvement occurs because the Co atoms, which have diffused into the GeTe lattice, occupy vacancy sites. Instead of degrading the zT value, Co deposition leads to a 56% increase in the zT value for the p-type GeTe joint. This study emphasizes the improvement of the zT value rather than pursuing a high peak zT value for GeTe.
關鍵字(中) ★ 熱電塊材
★ 熱電性質
★ 擴散阻障層
★ 鍺碲基
★ 菱面體結構
★ 交互擴散
關鍵字(英) ★ Thermoelectric bulk material
★ Thermoelectric property
★ Diffusion barrier
★ GeTe
★ Rhombohedral structure
★ Interdiffusion
論文目次 摘要 i
Abstract ii
致謝 iii
Table of Contents v
List of Figures vii
List of Tables x
CHAPTER 1 Introduction 11
1-1 Background 11
1-2 Thermoelectric Material 15
1-2-1 Fundamental Theory and Thermoelectric Property 15
1-2-2 Applications of Thermoelectric Device 18
1-3 GeTe-based Thermoelectric Material 22
1-4 Interfacial Stability for GeTe-Based Thermoelectric Modules 25
1-4-1 Diffusion Soldering 26
1-4-2 Spark plasma sintering 28
1-4-3 Hot-press bonding 30
1-5 Electroplated Cobalt as diffusion barrier 32
1-6 Evaluation of GeTe Thermoelectric Module 35
CHAPTER 2 Motivation 38
CHAPTER 3 Experimental Procedure 40
3-1 Sample Preparation 40
3-1-1 Fabrication of GeTe Bulk Material 40
3-1-2 Electroplating 41
3-2 Interfacial reaction 43
3-3 Contact Resistivity 45
3-4 Thermoelectric Properties 47
CHAPTER 4 Results and Discussion 48
4-1 Characterization of GeTe Bulk Material and Electroplated Co Layer 48
4-2 Interfacial Reaction & Diffusion Behavior 52
4-2-1 Interfacial Reaction without diffusion barrier in GeTe module 52
4-2-2 Interfacial Reaction with diffusion barrier in GeTe module 54
4-3 Contact Resistivity 63
4-4 Thermoelectric Properties 67
4-4-1 Thermoelectric Properties of GeTe bulk material 67
4-4-2 Thermoelectric Properties of GeTe/Co Samples 72
4-4-3 Thermal Conductivity & zT value of GeTe & GeTe/Co samples 73
Chapter 5 Conclusion 77
參考文獻 [1] "European Environmental Agency(EEA)," https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/environmental-performance/.
[2] C. Moore, S. Brown, P. MacDonald, M. Ewen, and H. Broadbent, “European electricity review 2022,” Ember: London, UK, 2022.
[3] D. Gibb, N. Ledanois, L. Ranalder, and H. Yaqoob, “Renewables 2022 global status report,” REN21: Paris, France, 2022.
[4] R. Basu, “Thermoelectric modules: key issues in architectural design and contact optimization,” ChemNanoMat, vol. 9, no. 3, pp. e202200551, 2023.
[5] N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, and M. Ismail, “A comprehensive review of Thermoelectric Generators: Technologies and common applications,” Energy reports, vol. 6, pp. 264-287, 2020.
[6] M. A. Zoui, S. Bentouba, J. G. Stocholm, and M. Bourouis, “A review on thermoelectric generators: Progress and applications,” Energies, vol. 13, no. 14, pp. 3606, 2020.
[7] X.-L. Shi, J. Zou, and Z.-G. Chen, “Advanced thermoelectric design: from materials and structures to devices,” Chemical reviews, vol. 120, no. 15, pp. 7399-7515, 2020.
[8] A. Ali, H. Shaukat, S. Bibi, W. A. Altabey, M. Noori, and S. A. Kouritem, “Recent progress in energy harvesting systems for wearable technology,” Energy Strategy Reviews, vol. 49, pp. 101124, 2023.
[9] M. Li, M. Hong, M. Dargusch, J. Zou, and Z.-G. Chen, “High-efficiency thermocells driven by thermo-electrochemical processes,” Trends in Chemistry, vol. 3, no. 7, pp. 561-574, 2021.
[10] T. Cao, X.-L. Shi, and Z.-G. Chen, “Advances in the design and assembly of flexible thermoelectric device,” Progress in Materials Science, vol. 131, pp. 101003, 2023.
[11] Z. Wu, S. Zhang, Z. Liu, E. Mu, and Z. Hu, “Thermoelectric converter: Strategies from materials to device application,” Nano Energy, vol. 91, pp. 106692, 2022.
[12] K. Tyagi, B. Gahtori, S. Kumar, and S. Dhakate, “Advances in solar thermoelectric and photovoltaic-thermoelectric hybrid systems for power generation,” Solar Energy, vol. 254, pp. 195-212, 2023.
[13] J. He, K. Li, L. Jia, Y. Zhu, H. Zhang, and J. Linghu, “Advances in the applications of thermoelectric generators,” Applied Thermal Engineering, pp. 121813, 2023.
[14] H. Liu, G. Li, X. Zhao, X. Ma, and C. Shen, “Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler,” Energy, vol. 267, pp. 126471, 2023.
[15] Z. Liu, S. Zhang, Z. Wu, E. Mu, H. Wei, Y. Liu, H. Shi, and Z. Hu, “High-performance integrated chip-level thermoelectric device for power generation and microflow detection,” Nano Energy, vol. 114, pp. 108611, 2023.
[16] T. Gong, L. Li, M. Shi, G. Hou, L. Kang, L. Gao, and J. Li, “A novel cascaded thin-film thermoelectric cooler for on-chip hotspot cooling,” Applied Thermal Engineering, vol. 231, pp. 120968, 2023.
[17] T. Kucova, M. Prauzek, J. Konecny, D. Andriukaitis, M. Zilys, and R. Martinek, “Thermoelectric energy harvesting for internet of things devices using machine learning: A review,” CAAI Transactions on Intelligence Technology, vol. 8, no. 3, pp. 680-700, 2023.
[18] S. Masoumi, M. Jabri, and A. Pakdel, “Investigating thin-film thermoelectric generators: Leg shapes, TEG configurations, and contact resistance analysis,” Energy Conversion and Management: X, pp. 100597, 2024.
[19] L. Huang, Y. Zheng, L. Xing, and B. Hou, “Recent progress of thermoelectric applications for cooling/heating, power generation, heat flux sensor and potential prospect of their integrated applications,” Thermal Science and Engineering Progress, pp. 102064, 2023.
[20] H. Liu, H. Fu, L. Sun, C. Lee, and E. M. Yeatman, “Hybrid energy harvesting technology: From materials, structural design, system integration to applications,” Renewable and sustainable energy reviews, vol. 137, pp. 110473, 2021.
[21] S. Corbett, D. Gautam, S. Lal, K. Yu, N. Balla, G. Cunningham, K. M. Razeeb, R. Enright, and D. McCloskey, “Electrodeposited thin-film micro-thermoelectric coolers with extreme heat flux handling and microsecond time response,” ACS Applied Materials & Interfaces, vol. 13, no. 1, pp. 1773-1782, 2021.
[22] S. Xu, X.-L. Shi, M. Dargusch, C. Di, J. Zou, and Z.-G. Chen, “Conducting polymer-based flexible thermoelectric materials and devices: From mechanisms to applications,” Progress in Materials Science, vol. 121, pp. 100840, 2021.
[23] W. Y. Chen, X. L. Shi, J. Zou, and Z. G. Chen, “Thermoelectric coolers: progress, challenges, and opportunities,” Small Methods, vol. 6, no. 2, pp. 2101235, 2022.
[24] W. A. Salah, and M. Abuhelwa, “Review of thermoelectric cooling devices recent applications,” Journal of Engineering Science and Technology, vol. 15, no. 1, pp. 455-476, 2020.
[25] T. Kajikawa, “Thermoelectric application for power generation in Japan,” Advances in Science and Technology, vol. 74, pp. 83-92, 2011.
[26] N. Bisht, P. More, P. K. Khanna, R. Abolhassani, Y. K. Mishra, and M. Madsen, “Progress of hybrid nanocomposite materials for thermoelectric applications,” Materials Advances, vol. 2, no. 6, pp. 1927-1956, 2021.
[27] D. Ji, H. Cai, Z. Ye, D. Luo, G. Wu, and A. Romagnoli, “Comparison between thermoelectric generator and organic Rankine cycle for low to medium temperature heat source: A Techno-economic analysis,” Sustainable Energy Technologies and Assessments, vol. 55, pp. 102914, 2023.
[28] Z. Chen, J. Li, G. Tang, J. Zhang, D. Zhang, and P. Gao, “High-efficiency heating and cooling technology with embedded pipes in buildings and underground structures: A review,” Renewable and Sustainable Energy Reviews, vol. 192, pp. 114209, 2024.
[29] P. Aranguren, D. Astrain, A. Rodríguez, and A. Martínez, “Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber,” Applied Energy, vol. 152, pp. 121-130, 2015.
[30] K. Ikoma, M. Munekiyo, K. Furuya, M. Kobayashi, T. Izumi, and K. Shinohara, "Thermoelectric module and generator for gasoline engine vehicles." pp. 464-467.
[31] W. B. Nader, “Thermoelectric generator optimization for hybrid electric vehicles,” Applied Thermal Engineering, vol. 167, pp. 114761, 2020.
[32] T. C. Holgate, R. Bennett, T. Hammel, T. Caillat, S. Keyser, and B. Sievers, “Increasing the efficiency of the multi-mission radioisotope thermoelectric generator,” Journal of Electronic Materials, vol. 44, pp. 1814-1821, 2015.
[33] D. Woerner, “A Progress Report on the eMMRTG,” J. Electron. Mater., vol. 45, no. March 2016, pp. 1278–1283, 2016.
[34] S. A. Abdul-Wahab, A. Elkamel, A. M. Al-Damkhi, A. Is′ Haq, H. S. Al-Rubai′ey, A. K. Al-Battashi, A. R. Al-Tamimi, K. H. Al-Mamari, and M. U. Chutani, “Design and experimental investigation of portable solar thermoelectric refrigerator,” Renewable energy, vol. 34, no. 1, pp. 30-34, 2009.
[35] Z. Chen, M. Liao, X. Hu, Y. Ma, S. Jiang, X. Chen, F. Zou, and Z. He, “Study on the performance of thermoelectric refrigerator under natural convection heat transfer condition,” Applied Thermal Engineering, vol. 230, pp. 120822, 2023.
[36] S. D. Patil, and K. D. Devade, “Review on thermoelectric refrigeration: applications and technology,” International Journal of Modern Trends in Engineering and Research (IJMTER), vol. 2, no. 7, 2015.
[37] Y.-W. Chang, C.-C. Chang, M.-T. Ke, and S.-L. Chen, “Thermoelectric air-cooling module for electronic devices,” Applied Thermal Engineering, vol. 29, no. 13, pp. 2731-2737, 2009.
[38] H.-S. Huang, Y.-C. Weng, Y.-W. Chang, S.-L. Chen, and M.-T. Ke, “Thermoelectric water-cooling device applied to electronic equipment,” International Communications in Heat and Mass Transfer, vol. 37, no. 2, pp. 140-146, 2010.
[39] M. M. Hameed, M. Mansor, M. Azrin Mohd Azau, and S. Muhsin, “Thermoelectric cooler performance enhancement using thermoelectric generators and their use as a single model to improve the performance of thermal battery management systems for electric vehicles,” Energy Storage, vol. 5, no. 5, pp. e406, 2023.
[40] Y. Lyu, A. Siddique, S. H. Majid, M. Biglarbegian, S. Gadsden, and S. Mahmud, “Electric vehicle battery thermal management system with thermoelectric cooling,” Energy Reports, vol. 5, pp. 822-827, 2019.
[41] M. S. Raut, and P. Walke, “Thermoelectric air cooling for cars,” International Journal of Engineering Science and Technology (IJEST), vol. 4, no. 5, pp. 2381-2394, 2012.
[42] X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, and Y. Pei, “GeTe thermoelectrics,” Joule, vol. 4, no. 5, pp. 986-1003, 2020.
[43] S. H. Zaferani, M. W. Sams, R. Ghomashchi, and Z.-G. Chen, “Thermoelectric coolers as thermal management systems for medical applications: Design, optimization, and advancement,” Nano energy, vol. 90, pp. 106572, 2021.
[44] J. Li, Z. Chen, X. Zhang, Y. Sun, J. Yang, and Y. Pei, “Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides,” NPG Asia Materials, vol. 9, no. 3, pp. e353-e353, 2017.
[45] M. R. Shankar, and A. Prabhu, “A review on structural characteristics and thermoelectric properties of mid-temperature range Chalcogenide-based thermoelectric materials,” Journal of Materials Science, vol. 58, no. 43, pp. 16591-16633, 2023.
[46] J. Li, Z. Chen, X. Zhang, H. Yu, Z. Wu, H. Xie, Y. Chen, and Y. Pei, “Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics,” Advanced Science, vol. 4, no. 12, pp. 1700341, 2017.
[47] H. Okamoto, “Ge-Te (germanium-tellurium),” Journal of Phase Equilibria, vol. 21, no. 5, pp. 496-496, Oct, 2000.
[48] B. Huang, and J. Robertson, “Nature of defects and gap states in GeTe model phase change materials,” Physical Review B, vol. 85, no. 12, pp. 125305, 2012.
[49] M. Hong, K. Zheng, W. Lyv, M. Li, X. Qu, Q. Sun, S. Xu, J. Zou, and Z.-G. Chen, “Computer-aided design of high-efficiency GeTe-based thermoelectric devices,” Energy & Environmental Science, vol. 13, no. 6, pp. 1856-1864, 2020.
[50] G. J. Snyder, and E. S. Toberer, “Complex thermoelectric materials,” Nature materials, vol. 7, no. 2, pp. 105-114, 2008.
[51] A. Dadhich, M. Saminathan, K. Kumari, S. Perumal, M. R. Rao, and K. Sethupathi, “Physics and technology of thermoelectric materials and devices,” Journal of Physics D: Applied Physics, 2023.
[52] H. Zhu, T. Zhao, B. Zhang, Z. An, S. Mao, G. Wang, X. Han, X. Lu, J. Zhang, and X. Zhou, “Entropy engineered cubic n‐type AgBiSe2 alloy with high thermoelectric performance in fully extended operating temperature range,” Advanced Energy Materials, vol. 11, no. 5, pp. 2003304, 2021.
[53] F. Guo, M. Liu, J. Zhu, Z. Liu, Y. Zhu, M. Guo, X. Dong, Q. Zhang, Y. Zhang, and W. Cai, “Suppressing lone-pair expression endows room-temperature cubic structure and high thermoelectric performance in GeTe-based materials,” Materials Today Physics, vol. 27, pp. 100780, 2022.
[54] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, “Convergence of electronic bands for high performance bulk thermoelectrics,” Nature, vol. 473, no. 7345, pp. 66-69, 2011.
[55] T. Xing, Q. Song, P. Qiu, Q. Zhang, X. Xia, J. Liao, R. Liu, H. Huang, J. Yang, and S. Bai, “Superior performance and high service stability for GeTe-based thermoelectric compounds,” National Science Review, vol. 6, no. 5, pp. 944-954, 2019.
[56] M. Samanta, T. Ghosh, R. Arora, U. V. Waghmare, and K. Biswas, “Realization of both n-and p-type GeTe thermoelectrics: electronic structure modulation by AgBiSe2 alloying,” Journal of the American Chemical Society, vol. 141, no. 49, pp. 19505-19512, 2019.
[57] P.-C. Wei, C.-X. Cai, C.-R. Hsing, C.-M. Wei, S.-H. Yu, H.-J. Wu, C.-L. Chen, D.-H. Wei, D.-L. Nguyen, and M. M. Chou, “Enhancing thermoelectric performance by Fermi level tuning and thermal conductivity degradation in (Ge1− xBix) Te crystals,” Scientific reports, vol. 9, no. 1, pp. 8616, 2019.
[58] Z. Liu, J. Sun, J. Mao, H. Zhu, W. Ren, J. Zhou, Z. Wang, D. J. Singh, J. Sui, and C.-W. Chu, “Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping,” Proceedings of the National Academy of Sciences, vol. 115, no. 21, pp. 5332-5337, 2018.
[59] Z. Zheng, X. Su, R. Deng, C. Stoumpos, H. Xie, W. Liu, Y. Yan, S. Hao, C. Uher, and C. Wolverton, “Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance,” Journal of the American Chemical Society, vol. 140, no. 7, pp. 2673-2686, 2018.
[60] D. Z. Wang, W. D. Liu, Y. Mao, S. Li, L. C. Yin, H. Wu, M. Li, Y. Wang, X. L. Shi, X. Yang, Q. Liu, and Z. G. Chen, “Decoupling Carrier-Phonon Scattering Boosts the Thermoelectric Performance of n-Type GeTe-Based Materials,” J Am Chem Soc, vol. 146, no. 2, pp. 1681-1689, Jan 17, 2024.
[61] D. K. Bhat, and U. S. Shenoy, “Mg/Ca doping ameliorates the thermoelectric properties of GeTe: influence of electronic structure engineering,” Journal of Alloys and Compounds, vol. 843, pp. 155989, 2020.
[62] L. C. Yin, W. D. Liu, M. Li, D. Z. Wang, H. Wu, Y. Wang, L. Zhang, X. L. Shi, Q. Liu, and Z. G. Chen, “Interstitial Cu: an effective strategy for high carrier mobility and high thermoelectric performance in GeTe,” Advanced Functional Materials, vol. 33, no. 25, pp. 2301750, 2023.
[63] H. Liu, X. Zhang, J. Li, Z. Bu, X. Meng, R. Ang, and W. Li, “Band and phonon engineering for thermoelectric enhancements of rhombohedral GeTe,” ACS applied materials & interfaces, vol. 11, no. 34, pp. 30756-30762, 2019.
[64] Z. Bu, W. Li, J. Li, X. Zhang, J. Mao, Y. Chen, and Y. Pei, “Dilute Cu2Te-alloying enables extraordinary performance of r-GeTe thermoelectrics,” Materials Today Physics, vol. 9, pp. 100096, 2019.
[65] Z. Liu, W. Gao, W. Zhang, N. Sato, Q. Guo, and T. Mori, “High power factor and enhanced thermoelectric performance in Sc and Bi codoped GeTe: Insights into the hidden role of rhombohedral distortion degree,” Advanced Energy Materials, vol. 10, no. 42, pp. 2002588, 2020.
[66] J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I. T. Witting, A. Faghaninia, Y. Chen, and A. Jain, “Low-symmetry rhombohedral GeTe thermoelectrics,” Joule, vol. 2, no. 5, pp. 976-987, 2018.
[67] H. He, W. Liu, Y. Wu, M. Rong, P. Zhao, and X. Tang, “An approximate and efficient characterization method for temperature-dependent parameters of thermoelectric modules,” Energy conversion and management, vol. 180, pp. 584-597, 2019.
[68] C. Chaki, M. Chaki, and K. Roy, “Formation of Intermetallic Compounds in Diffusion Soldering Joints in High Temperature Power Electronic Applications,” International journal of innovative research in technology, vol. 5, no. 11, pp. 724-732, 2019.
[69] T. H. C. L.C. Tsao, W. Gust, and E.J. Mittemeijer, “Proceedings of the 6th International Conference on Joining Ceramics, Glass and Metal,” Sep. 30–Oct. 1, 2002.
[70] W. Zhang, P. Limaye, Y. Civale, R. Labie, and P. Soussan, "Fine pitch Cu/Sn solid state diffusion bonding for making high yield bump interconnections and its application in 3D integration." pp. 1-4.
[71] I. Kwiecien, P. Bobrowski, A. Wierzbicka-Miernik, L. Litynska-Dobrzynska, and J. Wojewoda-Budka, “Growth kinetics of the selected intermetallic phases in Ni/Al/Ni system with various nickel substrate microstructure,” Nanomaterials, vol. 9, no. 2, pp. 134, 2019.
[72] C. Yang, H. Lai, J. Hwang, and T. Chuang, “Diffusion soldering of Pb-doped GeTe thermoelectric modules with Cu electrodes using a thin-film Sn interlayer,” Journal of electronic materials, vol. 42, pp. 359-365, 2013.
[73] O. Kostyuk, B. Dzundza, M. Maksymuk, V. Bublik, L. Chernyak, and Z. Dashevsky, “Development of Spark Plasma Syntering (SPS) technology for preparation of nanocrystalline p-type thermoelctrics based on (BiSb) 2Te3,” Physics and Chemistry of Solid State, vol. 21, no. 4, pp. 628-634, 2020.
[74] S. Muthiah, S. Choudhary, P. Sangwan, M. Yadav, C. Prajapati, N. K. Upadhyay, R. Shyam, and S. R. Dhakate, “High-Performance Functionalized Mg2Si0. 9Sn0. 1 Thermoelectric Leg Synthesis by a Single-Step Reactive SPS Process,” ACS Applied Energy Materials, vol. 5, no. 12, pp. 15710-15718, 2022.
[75] J. Li, S. Zhao, J. Chen, C. Han, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie, and C. Zhang, “Al–Si alloy as a diffusion barrier for GeTe-based thermoelectric legs with high interfacial reliability and mechanical strength,” ACS applied materials & interfaces, vol. 12, no. 16, pp. 18562-18569, 2020.
[76] T. Xing, Q. Song, P. Qiu, Q. Zhang, M. Gu, X. Xia, J. Liao, X. Shi, and L. Chen, “High efficiency GeTe-based materials and modules for thermoelectric power generation,” Energy & Environmental Science, vol. 14, no. 2, pp. 995-1003, 2021.
[77] L. Xie, C. Ming, Q. Song, C. Wang, J. Liao, L. Wang, C. Zhu, F. Xu, Y.-Y. Sun, and S. Bai, “Lead-free and scalable GeTe-based thermoelectric module with an efficiency of 12%,” Science Advances, vol. 9, no. 27, pp. eadg7919, 2023.
[78] V. Sokolova, L. Dudkin, and L. Petrova, “Diffusion processes at GeTe/SnTe/Fe contacts,” Inorganic materials, vol. 36, pp. 16-21, 2000.
[79] Z. Bu, X. Zhang, B. Shan, J. Tang, H. Liu, Z. Chen, S. Lin, W. Li, and Y. Pei, “Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys,” Science Advances, vol. 7, no. 19, pp. eabf2738, 2021.
[80] J. W. Choi, G. H. Hwang, W. K. Han, and S. G. Kang, “Phase transformation of Ni–B, Ni–P diffusion barrier deposited electrolessly on Cu interconnect,” Applied Surface Science, vol. 253, no. 4, pp. 2171-2178, 2006.
[81] L. Liu, Z. Chen, Z. Zhou, G. Chen, F. Wu, and C. Liu, “Diffusion barrier property of electroless Ni-WP coating in high temperature Zn-5Al/Cu solder interconnects,” Journal of Alloys and Compounds, vol. 722, pp. 746-752, 2017.
[82] E. Yusufu, T. Sugahara, M. Okajima, S. Nambu, and K. Suganuma, “Effects of microstructure of Ni barrier on bonding interface diffusion behaviors of Bi–Te-based thermoelectric material,” Journal of Alloys and Compounds, vol. 817, pp. 152731, 2020.
[83] H. Xia, F. Drymiotis, C.-L. Chen, A. Wu, and G. J. Snyder, “Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications,” Journal of Materials Science, vol. 49, pp. 1716-1723, 2014.
[84] K. Xiong, W. Wang, H. N. Alshareef, R. P. Gupta, J. B. White, B. E. Gnade, and K. Cho, “Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces,” Journal of Physics D: Applied Physics, vol. 43, no. 11, pp. 115303, 2010.
[85] D. Tripathi, and T. K. Dey, “Thermal conductivity, coefficient of linear thermal expansion and mechanical properties of LDPE/Ni composites,” Indian Journal of Physics, vol. 87, pp. 435-445, 2013.
[86] S. Perumal, S. Roychowdhury, and K. Biswas, “High performance thermoelectric materials and devices based on GeTe,” Journal of Materials Chemistry C, vol. 4, no. 32, pp. 7520-7536, 2016.
[87] R. N. Jarrett, and J. K. Tien, “Effects of cobalt on structure, microchemistry and properties of a wrought nickel-base superalloy,” Metallurgical Transactions A, vol. 13, pp. 1021-1032, 1982.
[88] M. Li, and J. Lu, “Cobalt in lithium-ion batteries,” Science, vol. 367, no. 6481, pp. 979-980, 2020.
[89] L. Tian, J. Xu, and S. Xiao, “The influence of pH and bath composition on the properties of Ni–Co coatings synthesized by electrodeposition,” Vacuum, vol. 86, no. 1, pp. 27-33, 2011.
[90] D. Kaur, D. K. Pandya, and S. Chaudhary, “Texture changes in electrodeposited cobalt nanowires with bath temperature,” Journal of The Electrochemical Society, vol. 159, no. 12, pp. D713, 2012.
[91] T. Cohen-Hyams, W. D. Kaplan, and J. Yahalom, “Structure of electrodeposited cobalt,” Electrochemical and solid-state letters, vol. 5, no. 8, pp. C75, 2002.
[92] A. E.-H. M. Abd EL, M. H. Fawzy, and M. A. Mahmoud, “Cobalt Electroplating from Aqueous Electrolytes of Different Anionic Species,” Denki Kagaku oyobi Kogyo Butsuri Kagaku, vol. 61, no. 11, pp. 1270-1276, 1993.
[93] S.-W. Chen, J.-C. Wang, and L.-C. Chen, “Interfacial reactions at the joints of PbTe thermoelectric modules using Ag-Ge braze,” Intermetallics, vol. 83, pp. 55-63, 2017.
[94] M. Aljaghtham, and E. Celik, “Design of cascade thermoelectric generation systems with improved thermal reliability,” Energy, vol. 243, pp. 123032, 2022.
[95] B. Cook, T. Chan, G. Dezsi, P. Thomas, C. Koch, J. Poon, T. Tritt, and R. Venkatasubramanian, “High-performance three-stage cascade thermoelectric devices with 20% efficiency,” Journal of Electronic Materials, vol. 44, pp. 1936-1942, 2015.
[96] E. Kanimba, M. Pearson, J. Sharp, D. Stokes, S. Priya, and Z. Tian, “A modeling comparison between a two-stage and three-stage cascaded thermoelectric generator,” Journal of Power Sources, vol. 365, pp. 266-272, 2017.
[97] W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren, “Understanding of the contact of nanostructured thermoelectric n-type Bi 2 Te 2.7 Se 0.3 legs for power generation applications,” Journal of Materials Chemistry A, vol. 1, no. 42, pp. 13093-13100, 2013.
[98] Z. Wu, Y. Lei, Y. Wang, and H. Fu, “Effect of cobalt content on microstructure and property of electroplated nickel‐cobalt alloy coatings,” Materialwissenschaft und Werkstofftechnik, vol. 44, no. 7, pp. 593-600, 2013.
[99] H. Noro, K. Sato, and H. Kagechika, “The thermoelectric properties and crystallography of Bi‐Sb‐Te‐Se thin films grown by ion beam sputtering,” Journal of Applied Physics, vol. 73, no. 3, pp. 1252-1260, 1993.
[100] K. Klepp, and K. Komarek, “Transition metal—chalcogene Systems, IV: The Systems Co− Te and Co− Ni− Te,” Monatshefte für Chemie/Chemical Monthly, vol. 104, pp. 105-117, 1973.
[101] 2024/06/03; https://oqmd.org/materials/composition/Co2Te3.
[102] K. Persson. "Materials Data on CoTe2 (SG:164) by Materials Project," 2024/06/03; https://legacy.materialsproject.org/materials/mp-1009641/.
[103] S.-W. Chen, Y. Chen, J. R. Chang, and H.-j. Wu, “Co/GeTe interfacial reactions and Co-Ge-Te phase equilibria,” Journal of the Taiwan Institute of Chemical Engineers, vol. 146, pp. 104890, 2023.
[104] A. Suwardi, J. Cao, Y. Zhao, J. Wu, S. W. Chien, X. Y. Tan, L. Hu, X. Wang, W. Wang, and D. Li, “Achieving high thermoelectric quality factor toward high figure of merit in GeTe,” Materials Today Physics, vol. 14, pp. 100239, 2020.
[105] K. S. Bayikadi, R. Sankar, C. T. Wu, C. Xia, Y. Chen, L.-C. Chen, K.-H. Chen, and F.-C. Chou, “Enhanced thermoelectric performance of GeTe through in situ microdomain and Ge-vacancy control,” Journal of materials chemistry A, vol. 7, no. 25, pp. 15181-15189, 2019.
[106] F. Tong, X. Miao, Y. Wu, Z. Chen, H. Tong, and X. Cheng, “Effective method to identify the vacancies in crystalline GeTe,” Applied Physics Letters, vol. 97, no. 26, 2010.
指導教授 吳子嘉(Tzu-Chia Wu) 審核日期 2024-9-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明