參考文獻 |
1. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., ... & Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), 1-22
2. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31.
3. Zheng, Y., Bonfili, L., Wei, T., & Eleuteri, A. M. (2023). Understanding the gut–brain axis and its therapeutic implications for neurodegenerative disorders. Nutrients, 15(21), 4631.
4. Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 2006. 312(5778): p. 1355-9.
5. Portincasa, P., Bonfrate, L., Vacca, M., De Angelis, M., Farella, I., Lanza, E., ... & Di Ciaula, A. (2022). Gut microbiota and short chain fatty acids: implications in glucose homeostasis. International journal of molecular sciences, 23(3), 1105.
6. Holzer, P., F. Reichmann, and A. Farzi, Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides, 2012. 46(6): p. 261-74.
7. Norris, V., F. Molina, and A.T. Gewirtz, Hypothesis: bacteria control host appetites. J Bacteriol, 2013. 195(3): p. 411-6
8. Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms, 2017. 5(4).
9. Mano, H. and H. Morisaki, Endophytic bacteria in the rice plant. Microbes Environ, 2008. 23(2): p. 109-17
10. Taghavi, S., et al., Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol, 2009. 75(3): p. 748-57.
11. Wang, H., et al., An efficient process for co-production of gamma-aminobutyric acid and probiotic Bacillus subtilis cells. Food Sci Biotechnol, 2019. 28(1): p. 155-163.
12. Asari, S., et al., Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta, 2017. 245(1): p. 15-30.
13. Valenzuela-Soto, J.H., et al., Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta, 2010. 231(2): p. 397-410.
14. Roberts, E. (1974). γ-aminobutyric acid and nervous system function—A perspective. Biochemical pharmacology, 23(19), 2637-2649
15. Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; et al. Diverse Applications of Nanomedicine. ACS Nano 2017, 11, 2313–2381
16. Wiwanitkit, V. Biodegradable Nanoparticles for Drug Delivery and Targeting. Surf. Modif. Nanopart. Target. Drug Deliv. 2019, 167–181.
17. Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y., & Aldughaim, M. S. (2023). Nanoparticles as Drug Delivery Systems: A Review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers, 15(7), 1596.
18. Anderson, J. M., & Shive, M. S. (1997). Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced drug delivery reviews, 28(1), 5-24
19. Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397.
20. H. K. Makadia, and S. J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers, 2011, 3, 1377-1397.
21. Liu, W. L., Zou, M. Z., Qin, S. Y., Cheng, Y. J., Ma, Y. H., Sun, Y. X., & Zhang, X. Z. (2020). Recent advances of cell membrane‐coated nanomaterials for biomedical applications. Advanced Functional Materials, 30(39), 2003559
22. McBroom, A. J., Johnson, A. P., Vemulapalli, S., & Kuehn, M. J. (2006). Outer membrane vesicle production by Escherichia coli is independent of membrane instability. Journal of bacteriology, 188(15), 5385-5392
23. Gao, F., Xu, L., Yang, B., Fan, F., & Yang, L. (2018). Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier. ACS infectious diseases, 5(2), 218-227.
24. Zhang, Y., Chen, Y., Lo, C., Zhuang, J., Angsantikul, P., Zhang, Q., ... & Zhang, L. (2019). Inhibition of pathogen adhesion by bacterial outer membrane‐coated nanoparticles. Angewandte Chemie International Edition, 58(33), 11404-11408.
25. Prosser, C. C., Yen, R. D., & Wu, J. (2006). Molecular therapy for hepatic injury and fibrosis: where are we?. World journal of gastroenterology: WJG, 12(4), 509.
26. Gressner, A. M., & Weiskirchen, R. (2006). Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF‐β as major players and therapeutic targets. Journal of cellular and molecular medicine, 10(1), 76-99.
27. Moreira, R. K. (2007). Hepatic stellate cells and liver fibrosis. Archives of pathology & laboratory medicine, 131(11), 1728-1734
28. Dong, S., Chen, Q. L., Song, Y. N., Sun, Y., Wei, B., Li, X. Y., ... & Su, S. B. (2016). Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. The Journal of toxicological sciences, 41(4), 561-572.
29. Liu, X., Dai, R., Ke, M., Suheryani, I., Meng, W., & Deng, Y. (2017). Differential Proteomic Analysis of Dimethylnitrosamine (DMN)‐Induced Liver Fibrosis. Proteomics, 17(22), 1700267.
30. Dong, W., Song, E., & Song, Y. (2021). Co-administration of lipopolysaccharide and D-galactosamine induces genotoxicity in mouse liver. Scientific Reports, 11(1), 1733.
31. Tolba, R., Kraus, T., Liedtke, C., Schwarz, M., & Weiskirchen, R. (2015). Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Laboratory animals, 49(1_suppl), 59-69.
32. Bahcecioglu, I. H., Ispiroglu, M., Tuzcu, M., Orhan, C., Ulas, M., Demirel, U., ... & Sahin, K. (2015). Pistacia terebinthus coffee protects against thioacetamide-induced liver injury in rats. Acta Medica, 58(2), 56-61.
33. Krishnasamy, Y., Ramshesh, V. K., Gooz, M., Schnellmann, R. G., Lemasters, J. J., & Zhong, Z. (2016). Ethanol and high cholesterol diet causes severe steatohepatitis and early liver fibrosis in mice. PLoS One, 11(9), e0163342.
34. Rocco, A., Compare, D., Angrisani, D., Zamparelli, M. S., & Nardone, G. (2014). Alcoholic disease: liver and beyond. World journal of gastroenterology: WJG, 20(40), 14652.
35. Xu, R., Zhang, Z., & Wang, F. S. (2012). Liver fibrosis: mechanisms of immune-mediated liver injury. Cellular & molecular immunology, 9(4), 296-301.
36. Pellicoro, A., Ramachandran, P., Iredale, J. P., & Fallowfield, J. A. (2014). Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nature Reviews Immunology, 14(3), 181-194.
37. Xuan, R., Zhao, X., Hu, D., Jian, J., Wang, T., & Hu, C. (2015). Three-dimensional visualization of the microvasculature of bile duct ligation-induced liver fibrosis in rats by x-ray phase-contrast imaging computed tomography. Scientific Reports, 5(1), 11500.
38. Moczydlowska, J., Miltyk, W., Hermanowicz, A., Lebensztejn, D. M., Palka, J. A., & Debek, W. (2017). HIF-1 α as a key factor in bile duct ligation-induced liver fibrosis in rats. Journal of Investigative Surgery, 30(1), 41-46.
39. Santos, J. C. F., de Araújo, O. R., Valentim, I. B., de Andrade, K. Q., Moura, F. A., Smaniotto, S., ... & Goulart, M. O. (2015). Choline and cystine deficient diets in animal models with hepatocellular injury: evaluation of oxidative stress and expression of RAGE, TNF-α, and IL-1β. Oxidative medicine and cellular longevity, 2015.
40. Jorgačević, B., Mladenović, D., Ninković, M., Prokić, V., Stanković, M. N., Aleksić, V., ... & Radosavljević, T. (2014). Dynamics of oxidative/nitrosative stress in mice with methionine–choline-deficient diet-induced nonalcoholic fatty liver disease. Human & experimental toxicology, 33(7), 701-709
41. Berendsen, R.L., Pieterse, C.M., and Bakker, P.A., The rhizosphere microbiome and plant health, Trends Plant Sci., 2012, vol. 17, pp. 478–486.
42. Taghavi, S., van der Lelie, D., Hoffman, A., Zhang, Y.B., Walla, M.D., Vangronsveld, J., Newman, L., and Monchy, S., Genome sequence of the plant growth promoting endophytic
43. Gupta, K., Dubey, N.K., Singh, S.P., Kheni, J.K., Gupta, S., and Varshney, A., Plant growth-promoting rhizobacteria (PGPR): current and future prospects for crop improvement,in Current Trends in Microbial Biotechnology for Sustainable Agriculture, Singapore: Springer, 2021, pp. 203–226.
44. Reva, O.N., Dixelius, C., Meijer, J., and Priest, F.G., Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus.
45. Valenzuela-Soto, J.H., Estrada-Hernández, M.G., Ibarra-Laclette. E., and Délano-Frier, J.P., Inoculation of tomatoplants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development,Planta, 2010, vol. 231, pp. 397–410.
46. Wang, H., Huang, J., Sun, L., Xu, F., Zhang, W., and Zhan, J., An efficient process for co-production of γ-aminobutyric acid and probiotic Bacillus subtilis cells, Food Sci. Biotechnol., 2018, vol. 28, pp. 155–163.
47. Mazzoli, R. and Pessione, E., The neuro-endocrinological role of microbial glutamate and GABA signaling, Front. Microbiol.,2016, vol. 7, p. 1934.
48. Yoto, A., Murao, S., Motoki, M., Yokoyama, Y., Horie, N.,Takeshima, K., Masuda, K., Kim, M., and Yokogoshi, H.,Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks, Amino Acids, 2012, vol. 43, pp. 1331–1337.
49. Abdou, A.M., Higashiguchi, S., Horie, K., Kim, M., Hatta,H., and Yokogoshi, H., Relaxation and immunity enhancementeffects of gamma-aminobutyric acid (GABA)administration in humans, Biofactors, 2006, vol. 26,pp. 201–208.
50. Ramesh, S.A., Tyerman, S.D., Xu, B., Bose, J., Kaur, S., Conn, V., Domingos, P., Ullah, S., Wege, S., Shabala, S.,Feijó, J.A., Ryan, P.R., and Gilliham, M., GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters, Nat. Commun., 2015,vol. 6, p. 7879.
51. Rashmi, D., Zanan, R., John, S., Khandagale, K., and Nadaf, A., γ-Aminobutyric acid (GABA): biosynthesis, role, commercial production, and applications, Stud. Nat. Prod. Chem., 2018, vol. 57, pp. 413–452.
52. Boonstra, E., de Kleijn, R., Colzato, L.S., Alkemade, A., Forstmann, B.U., and Nieuwenhuis, S., Neurotransmitters as food supplements: the effects of GABA on brain and behavior, Front. Psychol., 2015, vol. 6, p. 1520.
53. Patil, S.B. and Khan, M., Germinated brown rice as a value added rice product: a review, J. Food. Sci. Technol., 2011,vol. 48, pp. 661–667.
54. Jannoey, P., Niamsup, H., Lumyong, S., Suzuki, T., Katayama,T., and Chairote, G., Comparison of gamma-aminobutyric acid production in Thai rice grains, World J. Microbiol. Biotechnol., 2010, vol. 26, pp. 257–263.
55. Briguglio, M., Dell’Osso, B., Panzica, G., Malgaroli, A.,Banfi, G., Zanaboni, Dina, C., Galentino, R., and Porta, M.,Dietary neurotransmitters: a narrative review on current knowledge, Nutrients, 2015, vol. 10, p. 591.
56. Holzer, P. and Farzi, A., Neuropeptides and the microbiota– gut–brain axis, Adv. Exp. Med. Biol., 2014, vol. 817,pp. 195–219.
57. Vezzani, A., Sperk, G., and Colmers, W.F., Neuropeptide Y:emerging evidence for a functional role in seizure modulation,Trends Neurosci., 1999, vol. 22, pp. 25–30.
58. Holzer, P., Reichmann, F., and Farzi, A., Neuropeptide Y,peptide YY and pancreatic polypeptide in the gut–brain axis,Neuropeptides, 2012, vol. 46, pp. 261–274
59. Thorsell, A., Slawecki, C.J., El Khoury, A., Mathe, A.A.,and Ehlers, C.L., The effects of social isolation on neuropeptide Y levels, exploratory and anxiety-related behaviors in rats, Pharmacol. Biochem. Behav., 2006, vol. 83, pp. 28–34
60. Howland, R.H., Vagus nerve stimulation, Curr. Behav. Neurosci. Rep., 2014, vol. 1, pp. 64–73.
61. Mayer, E.A., Savidge, T., and Shulman, R.J., Brain–gut microbiome interactions and functional bowel disorders,Gastroenterology, 2014, vol. 146, pp. 1500–1512.
62. Ruan, S., Xue, Q., and Tylkowska, K., Effects of priming on germination and health of rice (Oryza sativa L.) seeds, Seed Sci. Technol., 2002, vol. 30, pp. 451–458
63. Karladee, D. and Suriyong, S., γ-Aminobutyric acid (GABA) content in different varieties of brown rice during germination,Sci. Asia, 2012, vol. 38, pp. 13–17.
64. Campos, A.C., Fogaça, M.V., Aguiar, D.C., and Guimaraes,F.S., Animal models of anxiety disorders and stress, Braz. J. Psychiatry, 2013, vol. 35, suppl. 2, pp. S101–S11.
65. Bilkei-Gorzo, A. and Gyertyan, I., Some doubts about the basic concept of hole-board test, Neurobiology, 1996, vol. 4,pp. 405–415
66. Ibironke, G.F. and Olley, S.M., Cholinergic modulation of restraint stress induced neurobehavioral alterations in mice, Afr. J. Biomed. Res., 2014, vol. 17, pp. 181–185
67. Haj-Mirzaian, A., Nikbakhsh, R., Ramezanzadeh, K., Rezaee, M., Amini-Khoei, H., Haj-Mirzaian, A., Ghesmati, M.,Afshari, K., Haddadi, N.S., and Dehpour, A.R., Involvement of opioid system in behavioral despair induced by social isolation stress in mice, Biomed. Pharmacother., 2019,vol. 109, pp. 938–944.
68. Breit, S., Kupferberg, A., Rogler, G., and Hasler, G., Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders, Front. Psychiatry, 2018, vol. 9,p.
69. Bravo, J.A., Forsythe, P., Chew, MV., Escaravage, E., Savignac,H.M., Dinan, T.G., Bienenstock, J., and Cryan, J.F.,Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve, Proc. Natl. Acad. Sci. U. S. A., 2011,vol. 108, pp. 16050–16055.
70. Hinton, T., Jelinek, H.F., Viengkhou, V., Johnston, G.A.,and Matthews, S., Effect of GABA-fortified oolong tea on reducing stress in a university student cohort, Front. Nutr.,2019, vol. 6, p. 27
71. Feehily, C. and Karatzas, K.A.G., Role of glutamate metabolism in bacterial responses towards acid and other stresses, J. Appl. Microbiol., 2013, vol. 114, pp. 11–24
72. Dhakal, R., Bajpai, V.K., and Baek, K.H., Production of GABA (γ-aminobutyric acid) by microorganisms: a review,Braz. J. Microbiol., 2012, vol. 43, pp. 1230–1241.
73. Suwanmanon, K. and Hsieh, P.C., Isolating Bacillus subtilis and optimizing its fermentative medium for GABA and nattokinase production, CyTA—J. Food, 2014, vol. 12, pp. 282–290.
74. Jung, W.Y., Kim, S.G., Kim, H.K., Huh, S.Y., Kim, D.W., Yoon, D.U., Yang, C.H., Kim, H.Y., and Jang, E.Y., The effect of oral administration of black sticky rice with giant embryo on brain GABA concentrations, Psychiatry Invest.,2019, vol. 16, pp. 615–620.
75. Tiwari, S., Prasad, V., Chauhan, P.S., and Lata, C., Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmo protection and gene expression regulation in rice, Front. Plant Sci., 2017, vol. 8, p. 1510.
76. Isaji, S., Yoshinaga, N., Teraishi, M., Ogawa, D., Kato, E., Okumoto, Y., Habu, Y., and Mori, N., Biosynthesis and accumulation of GABA in rice plants treated with acetic acid, J. Pestic. Sci., 2018, vol. 43, pp. 214–219.
77. Morgan, C.A. 3rd, Rasmusson, A.M., Wang, S., Hoyt, G.,Hauger, R.L., and Hazlett, G., Neuropeptide-Y, cortisol,and subjective distress in humans exposed to acute stress:8
78. Enman, N.M., Sabban, E.L., McGonigle, P., and Van Bockstaele, E.J., Targeting the neuropeptide Y system in stress-related psychiatric disorders, Neurobiol. Stress, 2015,vol. 1, pp. 33–43.
79. Brumovsky, P., Shi, T.S., Landry, M., Villar, M.J., and Hökfelt, T., Neuropeptide tyrosine and pain, Trends Pharmacol. Sci., 2007, vol. 28, pp. 93–102.
80. Sah, R., Parker, S.L., Sheriff, S., Eaton, K., Balasubramaniam, A., and Sallee, F.R., Interaction of NPY compounds with the rat glucocorticoid-induced receptor (GIR) reveals similarity to the NPY-Y2 receptor, Peptides, 2007, vol. 28, pp. 302–309.
81. Pin, J.P. and Prézeau, L., Allosteric modulators of GABAB receptors: mechanism of action and therapeutic perspective,Curr. Neuropharmacol., 2007, vol. 5, pp. 195–201
82. Cryan, J.F. and O’Mahony, S.M., The microbiome–gut–brain axis: from bowel to behavior, Neurogastroenterol. Motil.,2011, vol. 23, pp. 187–192
83. Thayer, J.F. and Sternberg, E.M., Neural concomitants of immunity—focus on the vagus nerve, Neuroimage, 2009,vol. 47, pp. 908–910.
84. S. K. Asrani, H. Devarbhavi, J. Eaton and P. S. Kamath, Burden of liver diseases in the world, J. Hepatol., 2019, 70, 151- 171.
85. G. O. Elpek, Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update, World J. Gastroenterol., 2014, 20, 7260–7276.
86. M. Parola and M. Pinzani, Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues, Mol. Aspects Med., 2019, 65, 37-55.
87. J. P. Iredale, Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ, J. Clin. Invest., 2007, 117(3), 539-548.
88. N. Roehlen, E. Crouchet and T. F. Baumert, Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives, Cells, 2020, 9(4), 875.
89. G. D’Amico, A. Morabito, M. D’Amico, L. Pasta, G. Malizia, P. Rebora and M. G. Valsecchi, New concepts on the clinical course and stratification of compensated and decompensated cirrhosis, Hepatol. Int., 2018, 12, 34–43.
90. J. M. Llovet, J. Zucman-Rossi, E. Pikarsky, B. Sangro, M. Schwartz, M. Sherman and G. Gores, Hepatocellular carcinoma, Nat. Rev. Dis. Primers, 2016, 2, 16018.
91. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA Cancer J. Clin., 2021, 71(3), 209-249.
92. M. B. Bansal and N. Chamroonkul, Antifibrotics in liver disease: are we getting closer to clinical use? Hepatol. Int., 2019, 13(1), 25-39.
93. J. Berumen, J. Baglieri, T. Kisseleva and K. Mekeel, Liver fibrosis: Pathophysiology and clinical implications, WIREs Mech. Dis., 2021, 13(1), e1499.
94. Y. A. Nevzorova, Z. Boyer-Diaz, F. J. Cubero and J. Gracia-Sancho, Animal models for liver disease - A practical approach for translational research, J. Hepatol., 2020, 73(2), 423-440.
95. S. C. Yanguas, B. Cogliati, J. Willebrords, M. Maes, I. Colle, B. van den Bossche, C. P. M. S. de Oliveira, W. Andraus, V. A. F. Alves, I. Leclercq and M. Vinken, Experimental models of liver fibrosis, Arch. Toxicol., 2016, 90(5), 1025-1048.
96. P. Starkel and I. A. Leclercq, Animal models for the study of hepatic fibrosis, Best Pract. Res. Clin. Gastroenterol., 2011, 25(2), 319-333.
97. J. B. Soares, P. Pimentel-Nunes, R. Roncon-Albuquerque and A. Leite-Moreira, The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases, Hepatol. Int., 2010, 4(4), 659-672.
98. K. Hamesch, E. Borkham-Kamphorst, P. Strnad and R. Weiskirchen, Lipopolysaccharide-induced inflammatory liver injury in mice, Lab. Anim., 2015, 49(1 Suppl), 37-46.
99. W. T. Liu, Y. Y. Jing, L. Gao, R. Li, X. Yang, X. R. Pan, Y. Yang, Y. Meng, X. J. Hou, Q. D. Zhao, Z. P. Han and L. X. Wei, Lipopolysaccharide induces the differentiation of hepatic progenitor cells into myofibroblasts constitutes the hepatocarcinogenesis-associated microenvironment, Cell Death Differ., 2020, 27(1), 85-101.
100. Y. H. Paik, R. F. Schwabe, R. Bataller, M. P. Russo, C. Jobin and D. A. Brenner, Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells, Hepatology, 2003, 37(5), 1043-1055.
101. J. Lasselin, M. Schedlowski, B. Karshikoff, H. Engler, M. Lekander and J. P. Konsman, Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression, Neurosci. Biobehav. Rev., 2020, 115, 15-24.
102. S. M. Opal, P. J. Scannon, J. L. Vincent, M. White, S. F. Carroll, J. E. Palardy, N. A. Parejo, J. P. Pribble and J. H. Lemke, Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock, J. Infect. Dis., 1999, 180(5), 1584-1589.
103. I. Berczi, L. Bertók and T. Bereznai, Comparative studies on the toxicity of Escherichia coli lipopolysaccharide endotoxin in various animal species, Can. J. Microbiol., 1966, 12(5), 1070-1071.
104. R. You, X. He, Z. Zeng, Y. Zhan, Y. Xiao and R. Xiao, Pyroptosis and Its Role in Autoimmune Disease: A Potential Therapeutic Target, Front. Immunol., 2022, 13, 841732.
105. A. A. D′Souza and P. V. Devarajan, Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications, J. Control Release, 2015, 203, 126-139.
106. J. Valladeau, V. Duvert-Frances, J. J. Pin, M. J. Kleijmeer, S. Ait-Yahia, O. Ravel, C. Vincent, F. Jr. Vega, A. Helms, D. Gorman, S. M. Zurawski, G. Zurawski, J. Ford and S. Saeland, Immature human dendritic cells express asialoglycoprotein receptor isoforms for efficient receptor-mediated endocytosis, J. Immunol., 2001, 167(10), 5767-5774.
107. J. Yang, F. Wang, L. Tian, J. Su, X. Zhu, L. Lin, X. Ding, X. Wang and S. Wang, Fibronectin and asialoglyprotein receptor mediate hepatitis B surface antigen binding to the cell surface, Arch. Virol., 2010, 155(6), 881-888.
108. G. Ahn, S. M. Banik and C. R. Bertozzi, Degradation from the outside in: Targeting extracellular and membrane proteins for degradation through the endolysosomal pathway, Cell Chem. Biol., 2021, 28(7), 1072-1080.
109. D. Zhang, Z. Guo, P. Zhang, Y. Li, X. Su, L. You, M. Gao, C. Liu, H. Wu and X. Zhang, Simplified quantification method for in vivo SPECT/CT imaging of asialoglycoprotein receptor with (99m)Tc-p(VLA-co-VNI) to assess and stage hepatic fibrosis in mice, Sci. Rep., 2016, 6, 25377.
110. A. Saraswathy, S. S. Nazeer, N. Nimi, H. Santhakumar, P. R. Suma, K. Jibin, M. Victor, F. B. Fernandez, S. Arumugam, S. J. Shenoy, P. R. H. Varma and R. S. Jayasree, Asialoglycoprotein receptor targeted optical and magnetic resonance imaging and therapy of liver fibrosis using pullulan stabilized multi-functional iron oxide nanoprobe, Sci. Rep., 2021, 11(1), 18324.
111. S. Pranatharthiharan, M. D. Patel, V. C. Malshe, V. Pujari, A. Gorakshakar, M. Madkaikar, K. Ghosh and P. V. Devarajan, Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma, Drug Deliv., 2017, 24(1), 20-29.
112. G. Siciliano, M. Corricelli, R. M. Iacobazzi, F. Canepa, D. Comegna, E. Fanizza, A. Del Gatto, M. Saviano, V. Laquintana, R. Comparelli, G. Mascolo, S. Murgolo, M. Striccoli, A. Agostiano, N. Denora, L. Zaccaro, M. L. Curri and N. Depalo, Gold-Speckled SPION@SiO2 Nanoparticles Decorated with Thiocarbohydrates for ASGPR1 Targeting: Towards HCC Dual Mode Imaging Potential Applications, Chemistry, 2020, 26(48), 11048-11059.
113. S. Su and P. M. Kang, Systemic review of biodegradable nanomaterials in nanomedicine, Nanomaterials, 2020, 10, 656.
114. H. K. Makadia, and S. J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers, 2011, 3, 1377-1397.
115. J. Yang, C. H. Lee, J. Park, S. Seo, E. K. Lim, Y. Song, J. Suh, H. G. Yoon, Y. Huh and S. Haam, Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer, Journal of Materials Chemistry, 2007, 17(26), 2695-2699.
116. F. Y. Lee, L. A. Colombato, A. Albillos and R. J. Groszmann, Administration of Nω-nitro-L-arginine ameliorates portal-systemic shunting in portal-hypertensive rats, Gastroenterology, 1993, 105, 1464-1470.
117. H. C. Huang, S. S. Wang, I. F. Hsin, C. C. Chang, F. Y. Lee, H. C. Lin, C. L. Chuang, J. Y. Lee, H. G. Hsieh and S. D. Lee, Cannabinoid receptor 2 agonist ameliorates mesenteric angiogenesis and portosystemic collaterals in cirrhotic rats, Hepatology, 2012, 56(1), 248-258.
118. A. Albillos, L. A. Colombato and R. J. Groszmann, Vasodilatation and sodium retention in prehepatic portal hypertension, Gastroenterology, 1992, 102, 931-935.
119. F. Cerini, M. Vilaseca, E. Lafoz, O. García-Irigoyen, H. García-Calderó, D. M. Tripathi, M. Avila, J. C. Reverter, J. Bosch, J. Gracia-Sancho and J. C. García-Pagán, Enoxaparin reduces hepatic vascular resistance and portal pressure in cirrhotic rats, J. Hepatol., 2016, 64, 834-842.
120. M. I. Love, W. Huber and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome biology, 2014, 15(12), 1-21.
121. Y. H. Lee, C. C. Chiu and C. Y. Chang, Engineered photo-chemical therapeutic nanocomposites provide effective antibiofilm and microbicidal activities against bacterial infections in porous devices, Biomater. Sci., 2021, 9(5), 1739-1753..
122. C. Chittasupho, S. X. Xie, A. Baoum, T. Yakovleva, T. J. Siahaan, and C. J. Berkland, ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells, Eur. J. Pharm. Sci., 2009, 37(2), 141-150.
123. S. J. Hsu, F. Y. Lee, S. S. Wang, I. F. Hsin, T. Y. Lin, H. C. Huang, C. C. Chang, C. L. Chuang, H. L. Ho, H. C. Lin and S. D. Lee, Caffeine ameliorates hemodynamic derangements and portosystemic collaterals in cirrhotic rats, Hepatology, 2015, 61, 1672-84
124. H. C. Huang, M. H. Tsai, C. C. Chang, C. K. Pun, Y. H. Huang, M. C. Hou, F. Y. Lee and S. J. Hsu, Microbiota transplants from feces or gut content attenuated portal hypertension and portosystemic collaterals in cirrhotic rats, Clin. Sci., 2021, 135(24), 2709-2728.
125. Y. Song, Y. Shi, L. H. Ao, A. H. Harken and X. Z. Meng, TLR4 mediates LPS-induced HO-1 expression in mouse liver: role of TNF-alpha and IL-1beta, World J. Gastroenterol., 2003, 9(8), 1799-1803. |