博碩士論文 105887006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.12.148.140
姓名 黃靜如(Ching-Ju Huang)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 製備脂多醣-去唾液酸醣蛋白受體-聚乳酸共聚物標靶奈米粒子用於肝纖維化動物模型
(Fabrication of Asialoglycoprotein Receptor-Targeted Lipopolysaccharides-Encapsulated PLGA Nanoparticles for Establishment of Liver Fibrosis Animal Models)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell
★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究★ 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究
★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane★ 開發可生物降解的完全磷酸膽鹼水凝膠
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds
★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry★ Disulfide-based cross-linkers for functional polymeric networks
★ 建立雙離子高分子修飾蛋白質技術與分析★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 血清神經肽Y (NPY) 是經由中樞神經元和周圍神經元所分泌的一種抑制性神經傳遞物質,它的改變可能會導致睡眠障礙等情緒疾病,γ-氨基丁酸(GABA)是一種抑制性神經傳導物質可以提高哺乳動物中樞神經系統的交感神經或副交感神經活動,因此被廣泛用於減輕憂鬱、焦慮。然而,合成GABA在體內半衰期短、吸收效率低使得其在藥物製劑中的可用性較差,而透過長期/規律的日常飲食攝取GABA更為有效。
在這項研究中,我們透過發芽過程中液化澱粉芽孢桿菌(B.amyloliquefaciens)(fermented rice)在台灣水稻中產出富含GABA的水稻,並證明接種解澱粉芽孢桿菌(fermented rice)的水稻不但可以正常生長更可提高發芽率。基於洞板試驗相關的研究,我們的數據顯示接受發酵米治療8天的小鼠血清NPY水平以及低頭次數與沒有GABA的小鼠相比顯著增加2倍(P < 0.01),除此之外透過使用GABA 受體拮抗劑或迷走神經切斷術分別去除胃腸道GABAB 受體或迷走神經時,這種fermented rice 誘導的功效急劇消失。這些結果證明發酵米在抗焦慮應用中的潛力,並證實了 GABA 誘導的抗焦慮活性可能的介質。
除此之外我的另一主要研究與奈米粒子息息相關,肝纖維化被認為是大多數肝臟疾病的開始,因此肝纖維化動物模型是開發大多數肝臟疾病治療策略的基石。儘管在過去幾十年中,肝毒性物質的運用和/或膽管結紮已被廣泛用於體內模型,但它們因耗時、高死亡率和不穩定而受到嚴重阻礙,這表明一個安全且有效的動物模型中誘導方法在目前是肝纖維化的防治亟待解決的問題。
在這項研究中,我們開發了去唾液酸醣蛋白受體(ASGPR)聚乳酸共聚物標靶奈米粒子靶向脂多醣(LPS)奈米粒子,稱為ALPND,用於建立肝纖維化動物模型。 ALPND 的特徵為球形奈米結構,尺寸為 182.9 ± 8.89 nm,表面電荷為 -8.3 ± 1.48 mV。奈米顆粒表面配備的抗 ASGPR 抗體,交聯效率為 95.03%,使 ALPND 具有肝細胞特異性結合能力。與遊離 LPS 相比,ALPND 可以提供類似的誘導肝臟發炎和纖維化的能力,但與裸露藥物相比具有更高的肝臟靶向性。此外,與遊離LPS相比,ALPND對肝臟以外的器官的毒性較小,這表明ALPND在體內不會引起脫靶效應。鑑於PLGA提供的上述功效以及生物相容性和藥物釋放可控性等其他優點,我們預期所開發的ALPND非常適合在臨床前研究中建立肝纖維化動物模型。
摘要(英) hanges in neuropeptide Y (NPY) levels in the bloodstream can lead to sleep disturbances, disruptions in circadian rhythms, and potentially contribute to emotional disorders. γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter and has been widely used for reduction of depression, anxiety, and/or psychological stress since it can raise the total or parasympathetic nerve activities in the mammalian central nervous system. In this study, we successfully produced GABA-enriched rice by inoculating grain seeds of Taiwanese rice with Bacillus amyloliquefaciens (B. amyloliquefaciens) during germination, and demonstrated that the B. amyloliquefaciens-inoculated rice (fermented rice) can grow with a normal root/sprout length but significantly increased germination ratio compared to the rice without B. amyloliquefaciens treatment. Based on the animal study in association with the hole board test, our data showed that the level of serum NPY as well as the number of head-dips of the mice treated with the fermented rice for 8 days significantly enhanced 2 folds (P < 0.01) compared to the mice without GABA, but such fermented rice-induced efficacies dramatically vanished as their gastrointestinal GABAB receptor and/or vagus nerves were removed through use of GABA receptor antagonist or vagotomy, respectively. These results manifested the potential of the fermented rice on anxiolytic applications and unveiled likely mediators for GABA-induced anxiolytic activity.
In addition, my other main research is closely related to nanoparticles. Liver fibrosis is generally considered as the beginning of most liver diseases and therefore a liver fibrosis animal model is the cornerstone for the development of therapeutic strategies for most of hepatic diseases. Although administrations of hepatotoxic substances and/or bile duct ligation have been widely used to build up the in vivo model over the last decades, they are seriously hindered with time consuming, high mortality, and instability, indicating that an effective and safe approach for induction of liver fibrosis is still urgently needed nowadays. In this study, we have developed asialoglycoprotein receptor (ASGPR)-target lipopolysaccharide (LPS)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles named ALPNDs for establishing animal models of liver fibrosis. The ALPNDs are characterized as a spherical nanostructure with size of 182.9 ± 8.89 nm and surface charge of −8.3 ± 1.48 mV. The anti-ASGPR-antibodies equipped on the nanoparticles surface with crosslinking efficiency of 95.03% allow the ALPNDs to be hepatocytic binding specific. In comparison to free LPS, the ALPNDs can induce higher aspartate aminotransferase and total bilirubin concentrations in plasma, reduce blood flow rate, and increase vascular resistance in liver, kidney, and collateral shunting vasculature. Based on the histological and RNA-seq analyses, the ALPNDs can provide similar capability on inductions of hepatic inflammation and fibrosis compared to free LPS, but possess higher liver targetability compared to the naked drug. In addition, the ALPNDs are less toxicity in organs other than liver in comparison to free LPS, demonstrating that the ALPNDs did not elicit off-target effects in vivo. Given aforementioned efficacies with other merits such as biocompatibility and drug release controllability provided by PLGA, we anticipate that the developed ALPND is highly applicable for establishing animal models of liver fibrosis in the pre-clinical study.
關鍵字(中) ★ 去唾液酸醣蛋白受體
★ 脂多醣
★ 肝纖維化
★ 肝纖維化動物模型
關鍵字(英) ★ γ-aminobutyric acid
★ PLGA nanoparticles
★ Liver fibrosis
★ Fermented rice
論文目次 Contents
Abstract in Chinese i
Abstract iii
Acknowledgment v
Contents vi
List of figures x
Chapter 1 Literature Review 1
1.1 Microbiome and Microbiota 1
1.2 Gut-Brain Axis GBA 1
1.3 The relationship between Neuropeptide Y (NPY) and anxiety disorders 3
1.4 Endophytic bacteria 4
1.5 Nanomedicine 5
1.6 Nanoparticles for Drug Delivery 5
1.7 Nano drug carriers 6
1.8 Polymer biomedical materials 9
1.9 PLGA nanoparticles 10
1.10 Bacteria in Nanoparticle Synthesis 10
1.11 Liver fibrosis 10
1.12 Animal models of liver fibrosis 11
Chapter 2 Research Framework and Research diagram 13
2.1 Research Topic 1: 13
2.2 Research Topic 2: 21
Chapter 3 Bacillus amyloliquefaciens-Inoculated GABA-Rich Rice Upregulate Neuropeptide Y to Relieve Psychological Stress through Mediations of GABAB Receptor and Vagus Nerves 29
3.1 Abstract 29
3.3 Materials and methods 31
3.3.1 Bacterial culture 31
3.3.2.Fermented rice production, cultivation and characterization 32
3.3.3 Ethical statement for animal study 32
3.3.4 Vagotomy 33
3.3.5 Hole-Board Test (HBT) 33
3.3.6 Administration and effect of fermented rice on mice 33
3.3.7 Assessment of the effects of GABAB receptor on NPY expression and behaviors of fermented rice -fed mice 34
3.3.8 Assessment of the effects of vagus nerves on NPY expression and behaviors of fermented rice-fed mice 34
3.3.9 Statistical analysis. 35
3.4 Results 35
3.4.1 Effects of B. amyloliquefaciens on Rice Germination and GABA Productions 35
3.4.2 Effects of fermented rice on NPY expression and behavioral changes of mice 37
3.4.3 Effects of GABAB Receptor on NPY Expression and Behavioral Changes of fermented rice-fed Mice 39
3.4.4 Effects of Vagus Nerves on NPY Expression and Behavioral Changes of fermented rice-fed Mice 41
3.5 Discussion 43
Chapter 4 Synthesis, Characterization, and Biological Verification of Asialoglycoprotein Receptor-Targeted Lipopolysaccharides-Encapsulated PLGA Nanoparticles for Establishment of Liver Fibrosis Animal Models 46
4.1 Abstract 46
4.2 Introduction 48
4.3 Materials and methods 51
4.3.1 Fabrication, surface modification, and characterization of the ALPNDs 51
4.3.2 Assessment of drug release efficiency of the ALPNDs 52
4.3.3 Cell culture 53
4.2.4 Evaluation of the proinflammatory capability of the ALPNDs in vitro 53
4.3.5 Assessment of cytotoxicity of the ALPNDs in vitro 54
4.3.6 Animal model and assay 54
4.3.7 Evaluation of effect of ALPNDs on hemodynamics and toxicity in vivo 54
4.3.8 Assessment of liver fibrosis degree in vivo after treatment with ALPNDs 56
4.3.9 Histological study 57
4.3.10 NGS Library construction and sequencing 57
4.3.11 Sequencing data analysis 58
4.3.12 Statistical Analysis 58
4.4 Results and discussion 59
4.4.1 Characterization of the ALPNDs 59
4.4.2 Efficiency of LPS release 59
4.4.3 Effectiveness of the ALPNDs on cellular inflammation 60
4.4.4 Cytotoxicity of the ALPNDs in vitro 61
4.4.5 Effect of ALPNDs on rat system 63
4.4.5 Effect of the ALPNDs on systemic hemodynamics 65
4.4.6 Effect of ALPNDs on liver fibrosis & RNA-sequencing analysis 67
4.4.7 Analyses of protein expressions of inflammation and fibrosis markers in liver 70
4.4.8 In vivo systematic toxicity analyses 72
3.5 Conclusions 74
References 75
參考文獻 1. Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., ... & Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), 1-22
2. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome. 2015;3:31.
3. Zheng, Y., Bonfili, L., Wei, T., & Eleuteri, A. M. (2023). Understanding the gut–brain axis and its therapeutic implications for neurodegenerative disorders. Nutrients, 15(21), 4631.
4. Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 2006. 312(5778): p. 1355-9.
5. Portincasa, P., Bonfrate, L., Vacca, M., De Angelis, M., Farella, I., Lanza, E., ... & Di Ciaula, A. (2022). Gut microbiota and short chain fatty acids: implications in glucose homeostasis. International journal of molecular sciences, 23(3), 1105.
6. Holzer, P., F. Reichmann, and A. Farzi, Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides, 2012. 46(6): p. 261-74.
7. Norris, V., F. Molina, and A.T. Gewirtz, Hypothesis: bacteria control host appetites. J Bacteriol, 2013. 195(3): p. 411-6
8. Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms, 2017. 5(4).
9. Mano, H. and H. Morisaki, Endophytic bacteria in the rice plant. Microbes Environ, 2008. 23(2): p. 109-17
10. Taghavi, S., et al., Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol, 2009. 75(3): p. 748-57.
11. Wang, H., et al., An efficient process for co-production of gamma-aminobutyric acid and probiotic Bacillus subtilis cells. Food Sci Biotechnol, 2019. 28(1): p. 155-163.
12. Asari, S., et al., Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta, 2017. 245(1): p. 15-30.
13. Valenzuela-Soto, J.H., et al., Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta, 2010. 231(2): p. 397-410.
14. Roberts, E. (1974). γ-aminobutyric acid and nervous system function—A perspective. Biochemical pharmacology, 23(19), 2637-2649
15. Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; et al. Diverse Applications of Nanomedicine. ACS Nano 2017, 11, 2313–2381
16. Wiwanitkit, V. Biodegradable Nanoparticles for Drug Delivery and Targeting. Surf. Modif. Nanopart. Target. Drug Deliv. 2019, 167–181.
17. Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y., & Aldughaim, M. S. (2023). Nanoparticles as Drug Delivery Systems: A Review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers, 15(7), 1596.
18. Anderson, J. M., & Shive, M. S. (1997). Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced drug delivery reviews, 28(1), 5-24
19. Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377-1397.
20. H. K. Makadia, and S. J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers, 2011, 3, 1377-1397.
21. Liu, W. L., Zou, M. Z., Qin, S. Y., Cheng, Y. J., Ma, Y. H., Sun, Y. X., & Zhang, X. Z. (2020). Recent advances of cell membrane‐coated nanomaterials for biomedical applications. Advanced Functional Materials, 30(39), 2003559
22. McBroom, A. J., Johnson, A. P., Vemulapalli, S., & Kuehn, M. J. (2006). Outer membrane vesicle production by Escherichia coli is independent of membrane instability. Journal of bacteriology, 188(15), 5385-5392
23. Gao, F., Xu, L., Yang, B., Fan, F., & Yang, L. (2018). Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier. ACS infectious diseases, 5(2), 218-227.
24. Zhang, Y., Chen, Y., Lo, C., Zhuang, J., Angsantikul, P., Zhang, Q., ... & Zhang, L. (2019). Inhibition of pathogen adhesion by bacterial outer membrane‐coated nanoparticles. Angewandte Chemie International Edition, 58(33), 11404-11408.
25. Prosser, C. C., Yen, R. D., & Wu, J. (2006). Molecular therapy for hepatic injury and fibrosis: where are we?. World journal of gastroenterology: WJG, 12(4), 509.
26. Gressner, A. M., & Weiskirchen, R. (2006). Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF‐β as major players and therapeutic targets. Journal of cellular and molecular medicine, 10(1), 76-99.
27. Moreira, R. K. (2007). Hepatic stellate cells and liver fibrosis. Archives of pathology & laboratory medicine, 131(11), 1728-1734
28. Dong, S., Chen, Q. L., Song, Y. N., Sun, Y., Wei, B., Li, X. Y., ... & Su, S. B. (2016). Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. The Journal of toxicological sciences, 41(4), 561-572.
29. Liu, X., Dai, R., Ke, M., Suheryani, I., Meng, W., & Deng, Y. (2017). Differential Proteomic Analysis of Dimethylnitrosamine (DMN)‐Induced Liver Fibrosis. Proteomics, 17(22), 1700267.
30. Dong, W., Song, E., & Song, Y. (2021). Co-administration of lipopolysaccharide and D-galactosamine induces genotoxicity in mouse liver. Scientific Reports, 11(1), 1733.
31. Tolba, R., Kraus, T., Liedtke, C., Schwarz, M., & Weiskirchen, R. (2015). Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Laboratory animals, 49(1_suppl), 59-69.
32. Bahcecioglu, I. H., Ispiroglu, M., Tuzcu, M., Orhan, C., Ulas, M., Demirel, U., ... & Sahin, K. (2015). Pistacia terebinthus coffee protects against thioacetamide-induced liver injury in rats. Acta Medica, 58(2), 56-61.
33. Krishnasamy, Y., Ramshesh, V. K., Gooz, M., Schnellmann, R. G., Lemasters, J. J., & Zhong, Z. (2016). Ethanol and high cholesterol diet causes severe steatohepatitis and early liver fibrosis in mice. PLoS One, 11(9), e0163342.
34. Rocco, A., Compare, D., Angrisani, D., Zamparelli, M. S., & Nardone, G. (2014). Alcoholic disease: liver and beyond. World journal of gastroenterology: WJG, 20(40), 14652.
35. Xu, R., Zhang, Z., & Wang, F. S. (2012). Liver fibrosis: mechanisms of immune-mediated liver injury. Cellular & molecular immunology, 9(4), 296-301.
36. Pellicoro, A., Ramachandran, P., Iredale, J. P., & Fallowfield, J. A. (2014). Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nature Reviews Immunology, 14(3), 181-194.
37. Xuan, R., Zhao, X., Hu, D., Jian, J., Wang, T., & Hu, C. (2015). Three-dimensional visualization of the microvasculature of bile duct ligation-induced liver fibrosis in rats by x-ray phase-contrast imaging computed tomography. Scientific Reports, 5(1), 11500.
38. Moczydlowska, J., Miltyk, W., Hermanowicz, A., Lebensztejn, D. M., Palka, J. A., & Debek, W. (2017). HIF-1 α as a key factor in bile duct ligation-induced liver fibrosis in rats. Journal of Investigative Surgery, 30(1), 41-46.
39. Santos, J. C. F., de Araújo, O. R., Valentim, I. B., de Andrade, K. Q., Moura, F. A., Smaniotto, S., ... & Goulart, M. O. (2015). Choline and cystine deficient diets in animal models with hepatocellular injury: evaluation of oxidative stress and expression of RAGE, TNF-α, and IL-1β. Oxidative medicine and cellular longevity, 2015.
40. Jorgačević, B., Mladenović, D., Ninković, M., Prokić, V., Stanković, M. N., Aleksić, V., ... & Radosavljević, T. (2014). Dynamics of oxidative/nitrosative stress in mice with methionine–choline-deficient diet-induced nonalcoholic fatty liver disease. Human & experimental toxicology, 33(7), 701-709
41. Berendsen, R.L., Pieterse, C.M., and Bakker, P.A., The rhizosphere microbiome and plant health, Trends Plant Sci., 2012, vol. 17, pp. 478–486.
42. Taghavi, S., van der Lelie, D., Hoffman, A., Zhang, Y.B., Walla, M.D., Vangronsveld, J., Newman, L., and Monchy, S., Genome sequence of the plant growth promoting endophytic
43. Gupta, K., Dubey, N.K., Singh, S.P., Kheni, J.K., Gupta, S., and Varshney, A., Plant growth-promoting rhizobacteria (PGPR): current and future prospects for crop improvement,in Current Trends in Microbial Biotechnology for Sustainable Agriculture, Singapore: Springer, 2021, pp. 203–226.
44. Reva, O.N., Dixelius, C., Meijer, J., and Priest, F.G., Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus.
45. Valenzuela-Soto, J.H., Estrada-Hernández, M.G., Ibarra-Laclette. E., and Délano-Frier, J.P., Inoculation of tomatoplants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development,Planta, 2010, vol. 231, pp. 397–410.
46. Wang, H., Huang, J., Sun, L., Xu, F., Zhang, W., and Zhan, J., An efficient process for co-production of γ-aminobutyric acid and probiotic Bacillus subtilis cells, Food Sci. Biotechnol., 2018, vol. 28, pp. 155–163.
47. Mazzoli, R. and Pessione, E., The neuro-endocrinological role of microbial glutamate and GABA signaling, Front. Microbiol.,2016, vol. 7, p. 1934.
48. Yoto, A., Murao, S., Motoki, M., Yokoyama, Y., Horie, N.,Takeshima, K., Masuda, K., Kim, M., and Yokogoshi, H.,Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks, Amino Acids, 2012, vol. 43, pp. 1331–1337.
49. Abdou, A.M., Higashiguchi, S., Horie, K., Kim, M., Hatta,H., and Yokogoshi, H., Relaxation and immunity enhancementeffects of gamma-aminobutyric acid (GABA)administration in humans, Biofactors, 2006, vol. 26,pp. 201–208.
50. Ramesh, S.A., Tyerman, S.D., Xu, B., Bose, J., Kaur, S., Conn, V., Domingos, P., Ullah, S., Wege, S., Shabala, S.,Feijó, J.A., Ryan, P.R., and Gilliham, M., GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters, Nat. Commun., 2015,vol. 6, p. 7879.
51. Rashmi, D., Zanan, R., John, S., Khandagale, K., and Nadaf, A., γ-Aminobutyric acid (GABA): biosynthesis, role, commercial production, and applications, Stud. Nat. Prod. Chem., 2018, vol. 57, pp. 413–452.
52. Boonstra, E., de Kleijn, R., Colzato, L.S., Alkemade, A., Forstmann, B.U., and Nieuwenhuis, S., Neurotransmitters as food supplements: the effects of GABA on brain and behavior, Front. Psychol., 2015, vol. 6, p. 1520.
53. Patil, S.B. and Khan, M., Germinated brown rice as a value added rice product: a review, J. Food. Sci. Technol., 2011,vol. 48, pp. 661–667.
54. Jannoey, P., Niamsup, H., Lumyong, S., Suzuki, T., Katayama,T., and Chairote, G., Comparison of gamma-aminobutyric acid production in Thai rice grains, World J. Microbiol. Biotechnol., 2010, vol. 26, pp. 257–263.
55. Briguglio, M., Dell’Osso, B., Panzica, G., Malgaroli, A.,Banfi, G., Zanaboni, Dina, C., Galentino, R., and Porta, M.,Dietary neurotransmitters: a narrative review on current knowledge, Nutrients, 2015, vol. 10, p. 591.
56. Holzer, P. and Farzi, A., Neuropeptides and the microbiota– gut–brain axis, Adv. Exp. Med. Biol., 2014, vol. 817,pp. 195–219.
57. Vezzani, A., Sperk, G., and Colmers, W.F., Neuropeptide Y:emerging evidence for a functional role in seizure modulation,Trends Neurosci., 1999, vol. 22, pp. 25–30.
58. Holzer, P., Reichmann, F., and Farzi, A., Neuropeptide Y,peptide YY and pancreatic polypeptide in the gut–brain axis,Neuropeptides, 2012, vol. 46, pp. 261–274
59. Thorsell, A., Slawecki, C.J., El Khoury, A., Mathe, A.A.,and Ehlers, C.L., The effects of social isolation on neuropeptide Y levels, exploratory and anxiety-related behaviors in rats, Pharmacol. Biochem. Behav., 2006, vol. 83, pp. 28–34
60. Howland, R.H., Vagus nerve stimulation, Curr. Behav. Neurosci. Rep., 2014, vol. 1, pp. 64–73.
61. Mayer, E.A., Savidge, T., and Shulman, R.J., Brain–gut microbiome interactions and functional bowel disorders,Gastroenterology, 2014, vol. 146, pp. 1500–1512.
62. Ruan, S., Xue, Q., and Tylkowska, K., Effects of priming on germination and health of rice (Oryza sativa L.) seeds, Seed Sci. Technol., 2002, vol. 30, pp. 451–458
63. Karladee, D. and Suriyong, S., γ-Aminobutyric acid (GABA) content in different varieties of brown rice during germination,Sci. Asia, 2012, vol. 38, pp. 13–17.
64. Campos, A.C., Fogaça, M.V., Aguiar, D.C., and Guimaraes,F.S., Animal models of anxiety disorders and stress, Braz. J. Psychiatry, 2013, vol. 35, suppl. 2, pp. S101–S11.
65. Bilkei-Gorzo, A. and Gyertyan, I., Some doubts about the basic concept of hole-board test, Neurobiology, 1996, vol. 4,pp. 405–415
66. Ibironke, G.F. and Olley, S.M., Cholinergic modulation of restraint stress induced neurobehavioral alterations in mice, Afr. J. Biomed. Res., 2014, vol. 17, pp. 181–185
67. Haj-Mirzaian, A., Nikbakhsh, R., Ramezanzadeh, K., Rezaee, M., Amini-Khoei, H., Haj-Mirzaian, A., Ghesmati, M.,Afshari, K., Haddadi, N.S., and Dehpour, A.R., Involvement of opioid system in behavioral despair induced by social isolation stress in mice, Biomed. Pharmacother., 2019,vol. 109, pp. 938–944.
68. Breit, S., Kupferberg, A., Rogler, G., and Hasler, G., Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders, Front. Psychiatry, 2018, vol. 9,p.
69. Bravo, J.A., Forsythe, P., Chew, MV., Escaravage, E., Savignac,H.M., Dinan, T.G., Bienenstock, J., and Cryan, J.F.,Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve, Proc. Natl. Acad. Sci. U. S. A., 2011,vol. 108, pp. 16050–16055.
70. Hinton, T., Jelinek, H.F., Viengkhou, V., Johnston, G.A.,and Matthews, S., Effect of GABA-fortified oolong tea on reducing stress in a university student cohort, Front. Nutr.,2019, vol. 6, p. 27
71. Feehily, C. and Karatzas, K.A.G., Role of glutamate metabolism in bacterial responses towards acid and other stresses, J. Appl. Microbiol., 2013, vol. 114, pp. 11–24
72. Dhakal, R., Bajpai, V.K., and Baek, K.H., Production of GABA (γ-aminobutyric acid) by microorganisms: a review,Braz. J. Microbiol., 2012, vol. 43, pp. 1230–1241.
73. Suwanmanon, K. and Hsieh, P.C., Isolating Bacillus subtilis and optimizing its fermentative medium for GABA and nattokinase production, CyTA—J. Food, 2014, vol. 12, pp. 282–290.
74. Jung, W.Y., Kim, S.G., Kim, H.K., Huh, S.Y., Kim, D.W., Yoon, D.U., Yang, C.H., Kim, H.Y., and Jang, E.Y., The effect of oral administration of black sticky rice with giant embryo on brain GABA concentrations, Psychiatry Invest.,2019, vol. 16, pp. 615–620.
75. Tiwari, S., Prasad, V., Chauhan, P.S., and Lata, C., Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmo protection and gene expression regulation in rice, Front. Plant Sci., 2017, vol. 8, p. 1510.
76. Isaji, S., Yoshinaga, N., Teraishi, M., Ogawa, D., Kato, E., Okumoto, Y., Habu, Y., and Mori, N., Biosynthesis and accumulation of GABA in rice plants treated with acetic acid, J. Pestic. Sci., 2018, vol. 43, pp. 214–219.
77. Morgan, C.A. 3rd, Rasmusson, A.M., Wang, S., Hoyt, G.,Hauger, R.L., and Hazlett, G., Neuropeptide-Y, cortisol,and subjective distress in humans exposed to acute stress:8
78. Enman, N.M., Sabban, E.L., McGonigle, P., and Van Bockstaele, E.J., Targeting the neuropeptide Y system in stress-related psychiatric disorders, Neurobiol. Stress, 2015,vol. 1, pp. 33–43.
79. Brumovsky, P., Shi, T.S., Landry, M., Villar, M.J., and Hökfelt, T., Neuropeptide tyrosine and pain, Trends Pharmacol. Sci., 2007, vol. 28, pp. 93–102.
80. Sah, R., Parker, S.L., Sheriff, S., Eaton, K., Balasubramaniam, A., and Sallee, F.R., Interaction of NPY compounds with the rat glucocorticoid-induced receptor (GIR) reveals similarity to the NPY-Y2 receptor, Peptides, 2007, vol. 28, pp. 302–309.
81. Pin, J.P. and Prézeau, L., Allosteric modulators of GABAB receptors: mechanism of action and therapeutic perspective,Curr. Neuropharmacol., 2007, vol. 5, pp. 195–201
82. Cryan, J.F. and O’Mahony, S.M., The microbiome–gut–brain axis: from bowel to behavior, Neurogastroenterol. Motil.,2011, vol. 23, pp. 187–192
83. Thayer, J.F. and Sternberg, E.M., Neural concomitants of immunity—focus on the vagus nerve, Neuroimage, 2009,vol. 47, pp. 908–910.
84. S. K. Asrani, H. Devarbhavi, J. Eaton and P. S. Kamath, Burden of liver diseases in the world, J. Hepatol., 2019, 70, 151- 171.
85. G. O. Elpek, Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update, World J. Gastroenterol., 2014, 20, 7260–7276.
86. M. Parola and M. Pinzani, Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues, Mol. Aspects Med., 2019, 65, 37-55.
87. J. P. Iredale, Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ, J. Clin. Invest., 2007, 117(3), 539-548.
88. N. Roehlen, E. Crouchet and T. F. Baumert, Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives, Cells, 2020, 9(4), 875.
89. G. D’Amico, A. Morabito, M. D’Amico, L. Pasta, G. Malizia, P. Rebora and M. G. Valsecchi, New concepts on the clinical course and stratification of compensated and decompensated cirrhosis, Hepatol. Int., 2018, 12, 34–43.
90. J. M. Llovet, J. Zucman-Rossi, E. Pikarsky, B. Sangro, M. Schwartz, M. Sherman and G. Gores, Hepatocellular carcinoma, Nat. Rev. Dis. Primers, 2016, 2, 16018.
91. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA Cancer J. Clin., 2021, 71(3), 209-249.
92. M. B. Bansal and N. Chamroonkul, Antifibrotics in liver disease: are we getting closer to clinical use? Hepatol. Int., 2019, 13(1), 25-39.
93. J. Berumen, J. Baglieri, T. Kisseleva and K. Mekeel, Liver fibrosis: Pathophysiology and clinical implications, WIREs Mech. Dis., 2021, 13(1), e1499.
94. Y. A. Nevzorova, Z. Boyer-Diaz, F. J. Cubero and J. Gracia-Sancho, Animal models for liver disease - A practical approach for translational research, J. Hepatol., 2020, 73(2), 423-440.
95. S. C. Yanguas, B. Cogliati, J. Willebrords, M. Maes, I. Colle, B. van den Bossche, C. P. M. S. de Oliveira, W. Andraus, V. A. F. Alves, I. Leclercq and M. Vinken, Experimental models of liver fibrosis, Arch. Toxicol., 2016, 90(5), 1025-1048.
96. P. Starkel and I. A. Leclercq, Animal models for the study of hepatic fibrosis, Best Pract. Res. Clin. Gastroenterol., 2011, 25(2), 319-333.
97. J. B. Soares, P. Pimentel-Nunes, R. Roncon-Albuquerque and A. Leite-Moreira, The role of lipopolysaccharide/toll-like receptor 4 signaling in chronic liver diseases, Hepatol. Int., 2010, 4(4), 659-672.
98. K. Hamesch, E. Borkham-Kamphorst, P. Strnad and R. Weiskirchen, Lipopolysaccharide-induced inflammatory liver injury in mice, Lab. Anim., 2015, 49(1 Suppl), 37-46.
99. W. T. Liu, Y. Y. Jing, L. Gao, R. Li, X. Yang, X. R. Pan, Y. Yang, Y. Meng, X. J. Hou, Q. D. Zhao, Z. P. Han and L. X. Wei, Lipopolysaccharide induces the differentiation of hepatic progenitor cells into myofibroblasts constitutes the hepatocarcinogenesis-associated microenvironment, Cell Death Differ., 2020, 27(1), 85-101.
100. Y. H. Paik, R. F. Schwabe, R. Bataller, M. P. Russo, C. Jobin and D. A. Brenner, Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells, Hepatology, 2003, 37(5), 1043-1055.
101. J. Lasselin, M. Schedlowski, B. Karshikoff, H. Engler, M. Lekander and J. P. Konsman, Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression, Neurosci. Biobehav. Rev., 2020, 115, 15-24.
102. S. M. Opal, P. J. Scannon, J. L. Vincent, M. White, S. F. Carroll, J. E. Palardy, N. A. Parejo, J. P. Pribble and J. H. Lemke, Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock, J. Infect. Dis., 1999, 180(5), 1584-1589.
103. I. Berczi, L. Bertók and T. Bereznai, Comparative studies on the toxicity of Escherichia coli lipopolysaccharide endotoxin in various animal species, Can. J. Microbiol., 1966, 12(5), 1070-1071.
104. R. You, X. He, Z. Zeng, Y. Zhan, Y. Xiao and R. Xiao, Pyroptosis and Its Role in Autoimmune Disease: A Potential Therapeutic Target, Front. Immunol., 2022, 13, 841732.
105. A. A. D′Souza and P. V. Devarajan, Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications, J. Control Release, 2015, 203, 126-139.
106. J. Valladeau, V. Duvert-Frances, J. J. Pin, M. J. Kleijmeer, S. Ait-Yahia, O. Ravel, C. Vincent, F. Jr. Vega, A. Helms, D. Gorman, S. M. Zurawski, G. Zurawski, J. Ford and S. Saeland, Immature human dendritic cells express asialoglycoprotein receptor isoforms for efficient receptor-mediated endocytosis, J. Immunol., 2001, 167(10), 5767-5774.
107. J. Yang, F. Wang, L. Tian, J. Su, X. Zhu, L. Lin, X. Ding, X. Wang and S. Wang, Fibronectin and asialoglyprotein receptor mediate hepatitis B surface antigen binding to the cell surface, Arch. Virol., 2010, 155(6), 881-888.
108. G. Ahn, S. M. Banik and C. R. Bertozzi, Degradation from the outside in: Targeting extracellular and membrane proteins for degradation through the endolysosomal pathway, Cell Chem. Biol., 2021, 28(7), 1072-1080.
109. D. Zhang, Z. Guo, P. Zhang, Y. Li, X. Su, L. You, M. Gao, C. Liu, H. Wu and X. Zhang, Simplified quantification method for in vivo SPECT/CT imaging of asialoglycoprotein receptor with (99m)Tc-p(VLA-co-VNI) to assess and stage hepatic fibrosis in mice, Sci. Rep., 2016, 6, 25377.
110. A. Saraswathy, S. S. Nazeer, N. Nimi, H. Santhakumar, P. R. Suma, K. Jibin, M. Victor, F. B. Fernandez, S. Arumugam, S. J. Shenoy, P. R. H. Varma and R. S. Jayasree, Asialoglycoprotein receptor targeted optical and magnetic resonance imaging and therapy of liver fibrosis using pullulan stabilized multi-functional iron oxide nanoprobe, Sci. Rep., 2021, 11(1), 18324.
111. S. Pranatharthiharan, M. D. Patel, V. C. Malshe, V. Pujari, A. Gorakshakar, M. Madkaikar, K. Ghosh and P. V. Devarajan, Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma, Drug Deliv., 2017, 24(1), 20-29.
112. G. Siciliano, M. Corricelli, R. M. Iacobazzi, F. Canepa, D. Comegna, E. Fanizza, A. Del Gatto, M. Saviano, V. Laquintana, R. Comparelli, G. Mascolo, S. Murgolo, M. Striccoli, A. Agostiano, N. Denora, L. Zaccaro, M. L. Curri and N. Depalo, Gold-Speckled SPION@SiO2 Nanoparticles Decorated with Thiocarbohydrates for ASGPR1 Targeting: Towards HCC Dual Mode Imaging Potential Applications, Chemistry, 2020, 26(48), 11048-11059.
113. S. Su and P. M. Kang, Systemic review of biodegradable nanomaterials in nanomedicine, Nanomaterials, 2020, 10, 656.
114. H. K. Makadia, and S. J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers, 2011, 3, 1377-1397.
115. J. Yang, C. H. Lee, J. Park, S. Seo, E. K. Lim, Y. Song, J. Suh, H. G. Yoon, Y. Huh and S. Haam, Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer, Journal of Materials Chemistry, 2007, 17(26), 2695-2699.
116. F. Y. Lee, L. A. Colombato, A. Albillos and R. J. Groszmann, Administration of Nω-nitro-L-arginine ameliorates portal-systemic shunting in portal-hypertensive rats, Gastroenterology, 1993, 105, 1464-1470.
117. H. C. Huang, S. S. Wang, I. F. Hsin, C. C. Chang, F. Y. Lee, H. C. Lin, C. L. Chuang, J. Y. Lee, H. G. Hsieh and S. D. Lee, Cannabinoid receptor 2 agonist ameliorates mesenteric angiogenesis and portosystemic collaterals in cirrhotic rats, Hepatology, 2012, 56(1), 248-258.
118. A. Albillos, L. A. Colombato and R. J. Groszmann, Vasodilatation and sodium retention in prehepatic portal hypertension, Gastroenterology, 1992, 102, 931-935.
119. F. Cerini, M. Vilaseca, E. Lafoz, O. García-Irigoyen, H. García-Calderó, D. M. Tripathi, M. Avila, J. C. Reverter, J. Bosch, J. Gracia-Sancho and J. C. García-Pagán, Enoxaparin reduces hepatic vascular resistance and portal pressure in cirrhotic rats, J. Hepatol., 2016, 64, 834-842.
120. M. I. Love, W. Huber and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome biology, 2014, 15(12), 1-21.
121. Y. H. Lee, C. C. Chiu and C. Y. Chang, Engineered photo-chemical therapeutic nanocomposites provide effective antibiofilm and microbicidal activities against bacterial infections in porous devices, Biomater. Sci., 2021, 9(5), 1739-1753..
122. C. Chittasupho, S. X. Xie, A. Baoum, T. Yakovleva, T. J. Siahaan, and C. J. Berkland, ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells, Eur. J. Pharm. Sci., 2009, 37(2), 141-150.
123. S. J. Hsu, F. Y. Lee, S. S. Wang, I. F. Hsin, T. Y. Lin, H. C. Huang, C. C. Chang, C. L. Chuang, H. L. Ho, H. C. Lin and S. D. Lee, Caffeine ameliorates hemodynamic derangements and portosystemic collaterals in cirrhotic rats, Hepatology, 2015, 61, 1672-84
124. H. C. Huang, M. H. Tsai, C. C. Chang, C. K. Pun, Y. H. Huang, M. C. Hou, F. Y. Lee and S. J. Hsu, Microbiota transplants from feces or gut content attenuated portal hypertension and portosystemic collaterals in cirrhotic rats, Clin. Sci., 2021, 135(24), 2709-2728.
125. Y. Song, Y. Shi, L. H. Ao, A. H. Harken and X. Z. Meng, TLR4 mediates LPS-induced HO-1 expression in mouse liver: role of TNF-alpha and IL-1beta, World J. Gastroenterol., 2003, 9(8), 1799-1803.
指導教授 李宇翔 審核日期 2024-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明