博碩士論文 111852003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.144.103.121
姓名 蘇主勝(Su Chu Sheng)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 非接觸式生理感測訊號分析研究
(Contactless vital signs detection and analysis)
相關論文
★ 以磁振造影探究有病灶及無病灶神經疾病的自動偵測方法之開發★ 複雜系統跨頻率耦合方法
★ 不同麻醉深度之相位-振幅耦合量測及強度比較★ 基於小波轉換之單一導程心電圖 重構12導程心電圖與分類
★ 發展非侵入式即時交感神經活性指標之量測系統★ 以靜息態功能性磁振造影探討頸動脈支架手術對於頸動脈狹窄病患大腦功能之影響
★ 運用加速度計實現具多項生理功能量測之即時監控IOT平台★ 功能性抗生物沾黏單層膜於冠狀動脈心血管疾病標誌物之檢測應用
★ 創新利用模擬呼吸竇性心律不整之多階熵評估乙型腎上腺素阻斷劑在心衰竭病人之治療成效★ 發展高抗干擾非接觸式生理訊號監測系統
★ 應用特徵分群技術於非侵入式神經活性與行 為活動訊號之生物指標萃取★ 應用模擬電生理及人工智慧技術創造跨臨床心電圖資料庫之心肌缺血成像模型
★ 從同步鼾聲聲學分析和睡眠動態核磁共振成像進行靜態顱面測量和動態上呼吸道塌陷觀察,並探討其與阻塞性睡眠呼吸中止症嚴重程度的關聯。★ 口內負壓睡眠裝置對於睡眠呼吸中止病人的轉譯研究- 針對解剖結構治療療效及策略探討
★ 體外加強反搏治療裝置開發★ 自12導程心電圖擷取P波特徵辨識竇性心律下之 心房顫動高風險病患
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 生理訊號(“Physiological Signal” : are defined as multichannel readings from the central and autonomic nervous system that carry meaningful information in terms of actions, responses, feelings, and behavior. 取自 Computer Science Review, 2021)作為中樞與神經系統對於動作、反應、感知與行為所帶出具有意義的資訊表現,透過各式監測設備以時間序列取樣方式收集數據來源,提供不限於醫療、照護與醫學研究等行為所需的生理狀態探索與觀察。
近年來有別於傳統ECG/PPG/sphygmomanometer等的各類新穎監測手段推陳出新,尤其在非接觸式的監測應用發展甚受矚目,這類型的技術方案主要用意不在於取代傳統的醫材,更著重於一般生活領域與長期照護場所的運用,實現”連續”與”零束縛”的生理訊號收集目的,凸顯對”可能風險、早期發現”與”隨時隨地、以防萬一”的使用價值。然而此類的監測手段容易遭受外在環境與受測者自主活動的干擾,為能順利導入使用場域,一套合用的訊號演算法勢必為成敗的關鍵。然而不同的硬體感測方案具備不同的訊號特性,每每需要專門開發一套對應的演算法,本研究旨在探討是否有機會發展一套較為通用型的算法架構,可以既”簡易”又”相容”各種檢測方案,降低使用者開發門檻,隨著市場上硬體感測方案陸續在性能及成本上的優化,使用一套易上手又具分析意義的演算法,可加速產業界商品化時程與多元性,造福更多終端使用者。
對於生理訊號的監測與分析基本建立於訊號表現的”周期性”與”振幅度”上,本研究成果所採用的簡易數據轉換即忠實地表現了前述兩種特性,同時追求較大相容度,選用的測試方案為低頻2.4GHz的生理雷達產品,偵測內容為呼吸率與心跳率,其頻段干擾最多,但可容許安裝距離相較高頻段產品遠,達2公尺,隨帶有一些訊號基頻偏移情況,在此狀態下實驗結果呼吸演算平均誤差率可在2 rpm以內,心跳平均誤差率可於8 bpm以內,另可在相同數據下運用簡易公式換算,成功識別”擾動”、”有生理訊號”與”無生理訊號”三類狀態,提供臨床照護重要風險指標。
最後,利用前述的數據轉換,結合基本的類神經網路MLP架構,訓練兩種訊號型態包含”有生理訊號”與”無生理訊號”,亦能順利完成建模,測試集擁有最佳98%的分類器成效,未來有機會延伸應用在特定生理表徵的模型建立與危險族群的風險預警,證明本研究成果具備:一套方法、多元使用、簡易且相容度高的預期優勢。
摘要(英) Physiological Signal: are defined as multichannel readings from the central and autonomic nervous system that carry meaningful information in terms of actions, responses, feelings, and behavior. (Taken from Computer Science Review, 2021). They are collected through various monitoring devices using time series sampling methods to provide data sources for the exploration and observation of physiological states required for activities such as medical care, caregiving, and medical research.
In recent years, various innovative monitoring methods, different from traditional ECG/PPG/sphygmomanometers, have emerged. Particularly, the development of non-contact monitoring applications has garnered significant attention. These technological solutions are not intended to replace traditional medical devices but rather emphasize their application in daily life and long-term care scenario. The goal is to achieve "continuous" and "zero-restriction" collection of physiological signals, highlighting their value for "potential risk, early detection," and "anytime, anywhere, just in case" use. However, these monitoring methods are susceptible to interference from the external environment and the autonomous activities of the elder people or patients. To successfully implement these methods in practical use, an appropriate signal algorithm is crucial. Different hardware sensing solutions have different signal characteristics, often requiring the development of specialized algorithms. This research aims to explore the possibility of developing a more generic algorithm framework that is both "simple" and "compatible" with various detection schemes, reducing the development barrier for users. As the performance and cost of hardware sensing solutions in the market continue to optimize, applying an easy-to-use and meaningful analytical algorithm can expedite the commercialization process and diversity in the industry, benefiting more end users.
The monitoring and analysis of physiological signals fundamentally relies on the "periodicity" and "amplitude" of the signal expression. The simple data transformation adopted in this study faithfully represents these two characteristics while pursuing greater compatibility. The selected test scheme involves a low-frequency 2.4GHz physiological radar product, detecting respiratory rate and heart rate. Although its frequency band is highly susceptible to interference, it allows for a greater installation distance compared to high-frequency products, reaching up to 2 meters. Despite some signal fundamental frequency offset situations, experimental results demonstrate that the average error rate for respiratory calculations can be within 2 rpm, and the average error rate for heart rate can be within 8 bpm. Additionally, using a simple conversion formula with the same data, it is possible to successfully identify three states: "disturbance," "presence of physiological signal," and "absence of physiological signal," providing crucial risk indicators for clinical care.
Finally, using the a forementioned data transformation combined with a basic neural network MLP (Multi-Layer Perceptron) architecture, modeling for two signal types, including "presence of physiological signal" and "absence of physiological signal," can be successfully completed. The test set achieved an optimal classifier performance of 98%, indicating potential future applications in establishing models for specific physiological features and risk warnings for vulnerable groups. This proves that the research results have the expected advantages of being a versatile, simple, and highly compatible method for multiple uses.
關鍵字(中) ★ 生理訊號
★ 非接觸式
★ 生理雷達
★ 呼吸率
★ 心跳率
★ 訊號型態
關鍵字(英) ★ Physiological Signal
★ non-contact
★ physiological radar
★ respiratory rate
★ heart rate
★ signal types
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 iv
表目錄 v
第一章 緒論 1
1-1 序言 1
1-2 本文架構 3
第二章 非接觸式生理感測訊號演算法 4
2-1相關研究 6
2-2研究方法 11
2-2-1 實驗架構 11
2-2-2 生理訊號演算法 12
2-2-3 狀態識別演算法 15
2-3 實驗結果 17
2-3-1 實驗環境設計 17
2-3-2 呼吸與心跳準確度測試結果 18
2-3-3 狀態識別準確度測試結果 22
第三章 用於生理訊號分析之神經網路研究 25
3-1研究方法 25
3-1-1 實驗架構 25
3-1-2 生理訊號轉化(數據編碼) 26
3-2 實驗結果 28
3-2-1 實驗環境設計 28
3-2-2 實驗環境測試結果 28
3-2-3 模型學習效能檢測 31
3-2-4 模型實驗檢討與調整驗證 32
第四章 結論與未來展望 37
參考文獻 39
參考文獻 參考文獻
[1] Nazmus Saquib, Md. Tarikul Islam Papon, Ishtiyaque Ahmad, Ashikur Rahman, “Measurement of Heart Rate Using Photoplethysmography”, Department of Computer Science and Engineering Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 05-07 Jan. 2015.
[2] Ameen Bin Obadi, Ping Jack Soh, Senior Member IEEE, Omar Aldayel, Member IEEE, Muataz Hameed Al-Doori, Senior Member IEEE, Marco Mercuri, Member IEEE and Dominique Schreurs, Fellow, IEEE, ” A Survey on Vital Signs Detection Using Radar Techniques and Processing with FPGA Implementation”,pp.2~5, 12 Feb. 2021.
[3] Zhao-Cheng Luo, Chien-Hong Lin, “Embedded Remote Physiological Signals and Respiration Detection System”, ICT Journal, No.164, pp.38~39, Dec. 2015.
[4] Luan-Jiau Chiu, “UWB Radar Based Static/Dynamic Human Breathing and Heart Rate Detections Using Two-layer EEMD Method”, pp.47,2020.
[5] Chen Sheng, “Noncontact Respiratory Waveform Detection Using a Microphone Array”, pp.34~38, 2023.
[6] Yi-Rou Liu, “Develop Motion-resilience Non-contact Photoplethysmography Monitoring System”, pp.16~21, 2022.
[7] OUYANG YING-FENG, “5 GHz Doppler Radar for the Detection of Heart Beat and Respiration Rates”, pp.45~58, 2023.
[8] Yu-Hui Shen, “Non-Contact Real-Time Respiration Rate Monitoring Using FMCW Radar”, pp.31, 2020.
[9] Hind Reggad, “Self-Injection Locking (SIL) Radar System for Vital Sign and Heart Motion Detection”, pp.88~90, 2021.
[10] Fu-Kang Wang, Student Member, IEEE, Chien-Jung Li, Member, IEEE, Chieh-Hsun Hsiao, Student Member, IEEE,Tzyy-Sheng Horng, Senior Member, IEEE, Jenshan Lin, Fellow, IEEE, Kang-Chun Peng, Member, IEEE,Je-Kuan Jau, Jian-Yu Li, Student Member, IEEE, and Cheng-Chung Chen, “A Novel Vital-Sign Sensor Based on a Self-Injection-Locked Oscillator”, IEEE Transactions on Microwave Theory and Technoques, vol. 58, no. 12, pp.4116, Dec. 2010.
[11] “Vital Signs Monitoring Devices Market Share | Global Outlook 2030”, press release by The Insight Partners, 28 Sep, 2023. https://www.theinsightpartners.com/pr/vital-signs-monitoring-devices-market
[12] “Global Contactless Health Monitors Industry Research Report, In-depth Analysis of Current Status and Outlook of key Countries 2023-2028”, Publishing Date : 30-Mar-2023. https://www.marketgrowthreports.com/global-contactless-health-monitors-industry-23292364
[13] ”物聯網技術驅動家庭健康照護之創新”, 張淨涵、洪立萍, 2021/09/03。https://outlook.stpi.narl.org.tw/index/focus-news/4b114100791e3859017baa15e4b00d24
[14] “數位科技時代下我國超高齡社會因應策略委託研究案”, 國家發展委員會, 中華民國109年8月。
[15] “智慧全人居家照護系統之研究”, 內政部建築研究所委託研究報告,中華民國110年12月。
[16] Mohammad Shadman Ishrak, Fulin Cai, Shekh Md Mahmudul Islam, Olga Borić-Lubecke, Teresa Wu, Victor M. Lubecke, “Doppler radar remote sensing of respiratory function”, Review , Frontiers in Physiology, 27 Apr. 2023.
[17] Rahman, A., Lubecke, V. M., Boric–Lubecke, O., Prins, J. H., and Sakamoto,T. (2018). Doppler radar techniques for accurate respiration characterization and subject identification. IEEE J. Emerg. Sel. Top. Circuits Syst. 8, pp.350–359. doi:10.1109/JETCAS.2018.2818181
[18] Rahman, A., Yavari, E., Lubecke, V. M., and Boric-Lubecke, O. (2016).“Noncontact Doppler radar unique identification system using neural network classifier on life signs,” in 2016 IEEE topical conference on biomedical wireless technologies, networks, and sensing systems (BioWireleSS). doi:10.1109/biowireless.2016. 7445558
[19] Xiang Zhang , Graduate Student Member, IEEE, Yu Gu , Senior Member, IEEE, Huan Yan , Yantong Wang, Mianxiong Dong , Member, IEEE, Kaoru Ota , Member, IEEE, Fuji Ren , Senior Member, IEEE, and Yusheng Ji , Fellow, IEEE. Wital: A COTS WiFi Devices Based Vital Signs Monitoring System Using NLOS Sensing Model. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS,pp.10,2023.
[20] Xuyu Wang, Chao Yang, and Shiwen Mao Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849-5201. PhaseBeat: Exploiting CSI Phase Data for Vital Sign Monitoring with Commodity WiFi Devices. 2017 IEEE 37th International Conference on Distributed Computing Systems,2016.
指導教授 羅孟宗(Lo, Men-Tzung) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明