參考文獻 |
1. Győrffy, B. (2024). Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br J Pharmacol, 181(3), 362-374. https://doi.org/10.1111/bph.16257
2. Georget, M., & Pisan, E. (2023). [Next Generation Sequencing (NGS) for beginners]. Rev Mal Respir, 40(4), 345-358. https://doi.org/10.1016/j.rmr.2023.01.026 (Approches diagnostiques basées sur le séquençage à haut débit.)
3. van Dijk, E. L., Jaszczyszyn, Y., Naquin, D., & Thermes, C. (2018). The Third Revolution in Sequencing Technology. Trends Genet, 34(9), 666-681. https://doi.org/10.1016/j.tig.2018.05.008
4. Tomczak, K., Czerwińska, P., & Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn), 19(1a), A68-77. https://doi.org/10.5114/wo.2014.47136
5. Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B., & Varambally, S. (2017). UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia, 19(8), 649-658. https://doi.org/10.1016/j.neo.2017.05.002
6. Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Creighton, C. J., & Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Ibid., 25, 18-27. https://doi.org/10.1016/j.neo.2022.01.001
7. Ji, H., Song, H., Wang, Z., Jiao, P., Xu, J., Li, X., Du, H., Wu, H., & Zhong, Y. (2021). FAM83A promotes proliferation and metastasis via Wnt/β-catenin signaling in head neck squamous cell carcinoma. Journal of translational medicine, 19, 1-13.
8. Zheng, Y.-W., Li, Z.-H., Lei, L., Liu, C.-C., Wang, Z., Fei, L.-R., Yang, M.-Q., Huang, W.-J., & Xu, H.-T. (2020). FAM83A promotes lung cancer progression by regulating the Wnt and Hippo signaling pathways and indicates poor prognosis. Frontiers in Oncology, 10, 180.
9. Zhang, M., Huo, C., Jiang, Y., Liu, J., Yang, Y., Yin, Y., & Qu, Y. (2021). AURKA and FAM83A are prognostic biomarkers and correlated with Tumor-infiltrating Lymphocytes in smoking related Lung Adenocarcinoma [Research Paper]. Journal of Cancer, 12(6), 1742-1754. https://doi.org/10.7150/jca.51321
10. iang, H., Hu, H., Tong, X., Jiang, Q., Zhu, H., & Zhang, S. (2012). Calcium-binding protein S100P and cancer: mechanisms and clinical relevance. Journal of cancer research and clinical oncology, 138, 1-9.
11. Hsu, Y.-L., Hung, J.-Y., Liang, Y.-Y., Lin, Y.-S., Tsai, M.-J., Chou, S.-H., Lu, C.-Y., & Kuo, P.-L. (2015). S100P interacts with integrin α7 and increases cancer cell migration and invasion in lung cancer. Oncotarget, 6(30), 29585.
12. Liu, Z., Xiao, Z., Wang, X., Zhang, L., & Zhang, Z. (2023). Ion channel gene GJB2 influences the intercellular communication by Up-regulating the SPP1 signaling pathway identified by the single-cell RNA sequencing in lung adenocarcinoma. Frontiers in Oncology, 13, 1146976.
13. Tang, Y., Zhang, Y.-J., & Wu, Z.-H. (2020). High GJB2 mRNA expression and its prognostic significance in lung adenocarcinoma: a study based on the TCGA database. Medicine, 99(14), e19054. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220691/pdf/medi-99-e19054.pdf
14. Gao, L., Zhang, H., Zhang, B., Zhu, J., Chen, C., & Liu, W. (2018). B3GNT3 overexpression is associated with unfavourable survival in non-small cell lung cancer. Journal of Clinical Pathology, 71(7), 642-647. https://doi.org/10.1136/jclinpath-2017-204860
15. Leng, X., Wei, S., Mei, J., Deng, S., Yang, Z., Liu, Z., Guo, C., Deng, Y., Xia, L., & Cheng, J. (2021). Identifying the prognostic significance of B3GNT3 with PD-L1 expression in lung adenocarcinoma. Translational Lung Cancer Research, 10(2), 965.
16. Sun, Y., Liu, T., Xian, L., Liu, W., Liu, J., & Zhou, H. (2020). B3GNT3, a direct target of miR-149-5p, promotes lung cancer development and indicates poor prognosis of lung cancer. Cancer Management and Research, 2381-2391.
17. Suzuki, C., Daigo, Y., Ishikawa, N., Kato, T., Hayama, S., Ito, T., Tsuchiya, E., & Nakamura, Y. (2005). ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Research, 65(24), 11314-11325.
18. Tuan, N. M., & Lee, C. H. (2020). Role of anillin in tumour: from a prognostic biomarker to a novel target. Cancers, 12(6), 1600.
19. Zheng, H., Long, G., Zheng, Y., Yang, X., Cai, W., He, S., Qin, X., & Liao, H. (2022). Glycolysis-related SLC2A1 is a potential pan-cancer biomarker for prognosis and immunotherapy. Ibid., 14(21), 5344.
20. Cao, K., Ling, X., Jiang, X., Ma, J., & Zhu, J. (2022). Pan-cancer analysis of UBE2T with a focus on prognostic and immunological roles in lung adenocarcinoma. Respiratory Research, 23(1), 306.
21. Chen, Y., Hong, H., Wang, Q., Li, J., Zhang, W., Chen, T., & Li, P. (2021). NEDD4L-induced ubiquitination mediating UBE2T degradation inhibits progression of lung adenocarcinoma via PI3K-AKT signaling. Cancer Cell International, 21, 1-13.
22. Gunasekaran, P., Lee, G.-H., Hwang, Y. S., Koo, B.-C., Han, E. H., Bang, G., La, Y. K., Park, S., Kim, H. N., & Kim, M.-H. (2022). An investigation of Plk1 PBD inhibitor KBJK557 as a tumor growth suppressor in non-small cell lung cancer. Journal of Analytical Science and Technology, 13(1), 36.
23. Ibid., Gunasekaran, P., Lee, G.-H., Hwang, Y. S., Koo, B.-C., Han, E. H., Bang, G., La, Y. K., Park, S., Kim, H. N., Kim, M.-H., Bang, J. K., & Ryu, E. K. Ibid. https://doi.org/10.1186/s40543-022-00345-2
24. Van den Bossche, J., Domen, A., Peeters, M., Deben, C., De Pauw, I., Jacobs, J., De Bruycker, S., Specenier, P., Pauwels, P., & Vermorken, J. B. (2019). Radiosensitization of non-small cell lung cancer cells by the Plk1 inhibitor volasertib is dependent on the p53 status. Cancers, 11(12), 1893.
25. Chen, H., Xia, R., Jiang, L., Zhou, Y., Xu, H., Peng, W., Yao, C., Zhou, G., Zhang, Y., & Xia, H. (2021). Overexpression of RhoV promotes the progression and EGFR-TKI resistance of lung adenocarcinoma. Frontiers in Oncology, 11, 619013.
26. Liyasova, M. S., Ma, K., & Lipkowitz, S. (2015). Molecular pathways: Cbl proteins in tumorigenesis and antitumor immunity—opportunities for cancer treatment. Clinical cancer research, 21(8), 1789-1794.
27. Hong, S.-Y., Kao, Y.-R., Lin, Y.-P., Lee, M.-H., Wu, J.-Y., & Wu, C.-W. (2020). CBLC functions as a novel therapeutic target to enhance the efficacy of paclitaxel on EGFR wild-type lung adenocarcinoma by downregulating AURKA. Cancer Research, 80(16_Supplement), 4852-4852.
28. Li, G.-S., Zhang, W., Huang, W.-Y., He, R.-Q., Huang, Z.-G., Gan, X.-Y., Yang, Z., Dang, Y.-W., Kong, J.-L., & Zhou, H.-F. (2023). CEP55: an immune-related predictive and prognostic molecular biomarker for multiple cancers. BMC Pulmonary Medicine, 23(1), 166.
29. Fu, L., Wang, H., Wei, D., Wang, B., Zhang, C., Zhu, T., Ma, Z., Li, Z., Wu, Y., & Yu, G. (2020). The value of CEP55 gene as a diagnostic biomarker and independent prognostic factor in LUAD and LUSC. Plos one, 15(5), e0233283.
30. Li, G.-S., Zhang, W., Huang, W.-Y., He, R.-Q., Huang, Z.-G., Gan, X.-Y., Yang, Z., Dang, Y.-W., Kong, J.-L., & Zhou, H.-F. (2023). CEP55: an immune-related predictive and prognostic molecular biomarker for multiple cancers. BMC Pulmonary Medicine, 23(1), 166.
31. Rashidieh, B., Tria, S. M., & Khanna, K. K. (2022). Understanding the role of Cep55 in initiation and progression of cancers. Cancer Research, 82(12_Supplement), 6033-6033.
32. Qian, X., Song, X., He, Y., Yang, Z., Sun, T., Wang, J., Zhu, G., Xing, W., & You, C. (2015). CCNB2 overexpression is a poor prognostic biomarker in Chinese NSCLC patients. Biomedicine & Pharmacotherapy, 74, 222-227.
33. Li, M.-J., Yan, S.-B., Chen, G., Li, G.-S., Yang, Y., Wei, T., He, D.-S., Yang, Z., Cen, G.-Y., & Wang, J. (2022). Upregulation of CCNB2 and its perspective mechanisms in cerebral ischemic stroke and all subtypes of lung cancer: a comprehensive study. Frontiers in Integrative Neuroscience, 16, 854540.
34. Jin, C.-Y., Du, L., Nuerlan, A.-H., Wang, X.-L., Yang, Y.-W., & Guo, R. (2021). High expression of RRM2 as an independent predictive factor of poor prognosis in patients with lung adenocarcinoma. Aging (Albany NY), 13(3), 3518.
35. Rahman, M. A., Amin, A. R., Wang, D., Koenig, L., Nannapaneni, S., Chen, Z., Wang, Z., Sica, G., Deng, X., & Chen, Z. (2013). RRM2 regulates Bcl-2 in head and neck and lung cancers: a potential target for cancer therapy. Clinical cancer research, 19(13), 3416-3428.
36. Zhou, Z., Song, Q., Yang, Y., Wang, L., & Wu, Z. (2022). Comprehensive landscape of RRM2 with immune infiltration in pan-cancer. Cancers, 14(12), 2938. |