參考文獻 |
Vettorello, M., et al., Effect of fentanyl on heart rate variability during spontaneous and paced breathing in healthy volunteers. Acta Anaesthesiol Scand, 2008. 52(8): p. 1064-70.
2. Saxena, P.R. and I.L. Bonta, Mechanism of selective cardiac vagolytic action of pancuronium bromide. Specific blockade of cardiac muscarinic receptors. European Journal of Pharmacology, 1970. 11(3): p. 332-341.
3. Robinson, B.J., H.C. Buyck, and D.C. Galletly, Effect of propofol on heart rate, arterial pressure and digital plethysmograph variability. Br J Anaesth, 1994. 73(2): p. 167-73.
4. Gin, T., Prevention of hypotension after propofol for rapid sequence intubation. Can J Anaesth, 1996. 43(8): p. 877-8.
5. Colombo, R., et al., Pulse Photoplethysmographic Analysis Estimates the Sympathetic Activity Directed to Heart and Vessels. Anesthesiology, 2015. 123(2): p. 336-45.
6. Deutschman, C.S., A.P. Harris, and L.A. Fleisher, Changes in Heart Rate Variability Under Propofol Anesthesia: A Possible Explanation for Propofol-Induced Bradycardia. Anesthesia & Analgesia, 1994. 79(2): p. 373-377.
7. Maenpaa, M., et al., The effects of surgical levels of sevoflurane and propofol anaesthesia on heart rate variability. Eur J Anaesthesiol, 2007. 24(7): p. 626-33.
8. Win, N.N., et al., Haemodynamic changes and heart rate variability during midazolam-propofol co-induction. Anaesthesia, 2007. 62(6): p. 561-8.
9. Ahonen, J., et al., Surgical stress index reflects surgical stress in gynaecological laparoscopic day-case surgery. Br J Anaesth, 2007. 98(4): p. 456-61.
10. Hamunen, K., et al., Effect of pain on autonomic nervous system indices derived from photoplethysmography in healthy volunteers. Br J Anaesth, 2012. 108(5): p. 838-44.
11. Pomeranz, B., et al., Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol, 1985. 248(1 Pt 2): p. H151-3.
12. Frazier, T.W., M.E. Strauss, and S.R. Steinhauer, Respiratory sinus arrhythmia as an index of emotional response in young adults. Psychophysiology, 2004. 41(1): p. 75-83.
13. Malliani, A., et al., Cardiovascular neural regulation explored in the frequency domain. Circulation, 1991. 84(2): p. 482-92.
14. Montano, N., et al., Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation, 1994. 90(4): p. 1826-31.
15. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J, 1996. 17(3): p. 354-81.
16. Logier, R., et al., PhysioDoloris: a monitoring device for analgesia / nociception balance evaluation using heart rate variability analysis. Conf Proc IEEE Eng Med Biol Soc, 2010. 2010: p. 1194-7.
17. Blanik, N., et al., Hybrid optical imaging technology for long-term remote monitoring of skin perfusion and temperature behavior. J Biomed Opt, 2014. 19(1): p. 16012.
18. Huiku, M., et al., Assessment of surgical stress during general anaesthesia. Br J Anaesth, 2007. 98(4): p. 447-55.
19. Glen, J.B., Try, try, and try again: personal reflections on the development of propofol. Br J Anaesth, 2019. 123(1): p. 3-9.
20. Brown, E.N. and L.A. Santa Cruz, Multimodal General Anesthesia in Practice. Anesthesiology News, 2019(Oct): p. 49-59.
21. Purdon, P.L., et al., Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology, 2015. 123(4): p. 937-60.
22. Sahinovic, M.M., M. Struys, and A.R. Absalom, Clinical Pharmacokinetics and Pharmacodynamics of Propofol. Clin Pharmacokinet, 2018. 57(12): p. 1539-1558.
23. Singh, H., Bispectral index (BIS) monitoring during propofol-induced sedation and anaesthesia. Eur J Anaesthesiol, 1999. 16(1): p. 31-6.
24. Eleveld, D.J., et al., Pharmacokinetic-pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br J Anaesth, 2018. 120(5): p. 942-959.
25. Lischke, V., et al., Prolongation of the QT-interval during induction of anesthesia in patients with coronary artery disease. Acta Anaesthesiol Scand, 1994. 38(2): p. 144-8.
26. Schnider, T.W., et al., The influence of age on propofol pharmacodynamics. Anesthesiology, 1999. 90(6): p. 1502-16.
27. Marsh, B., et al., Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth, 1991. 67(1): p. 41-8.
28. Eleveld, D.J., et al., A general purpose pharmacokinetic model for propofol. Anesth Analg, 2014. 118(6): p. 1221-37.
29. Cortinez, L.I., et al., Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis. Anesth Analg, 2014. 119(2): p. 302-310.
30. Schnider, T.W., et al., Relationship Between Propofol Target Concentrations, Bispectral Index, and Patient Covariates During Anesthesia. Anesth Analg, 2021. 132(3): p. 735-742.
31. Vellinga, R., et al., General purpose models for intravenous anesthetics, the next generation for target-controlled infusion and total intravenous anesthesia? Curr Opin Anaesthesiol, 2023. 36(5): p. 602-607.
32. Minto, C.F., et al., Response surface model for anesthetic drug interactions. Anesthesiology, 2000. 92(6): p. 1603-16.
33. Greco, W.R., G. Bravo, and J.C. Parsons, The search for synergy: a critical review from a response surface perspective. Pharmacol Rev, 1995. 47(2): p. 331-85.
34. Bol, C.J., et al., Quantification of pharmacodynamic interactions between dexmedetomidine and midazolam in the rat. J Pharmacol Exp Ther, 2000. 294(1): p. 347-55.
35. Wong, K.C., Narcotics are not expected to produce unconsciousness and amnesia. Anesth Analg, 1983. 62(7): p. 625-6.
36. Lee, S.I., Drug interaction: focusing on response surface models. Korean J Anesthesiol, 2010. 58(5): p. 421-34.
37. Mallat, S., A Wavelet Tour of Signal Processing. 2nd ed. 2001.
38. Reich, D.L., et al., Intraoperative hemodynamic predictors of mortality, stroke, and myocardial infarction after coronary artery bypass surgery. Anesth Analg, 1999. 89(4): p. 814-22.
39. Frandsen, M.N., et al., Preoperative heart rate variability as a predictor of perioperative outcomes: a systematic review without meta-analysis. J Clin Monit Comput, 2022. 36(4): p. 947-960.
40. Kanaya, N., et al., Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology, 2003. 98(1): p. 34-40.
41. Cnockaert, L., et al., A method for the analysis of respiratory sinus arrhythmia using continuous wavelet transforms. IEEE Trans Biomed Eng, 2008. 55(5): p. 1640-2.
42. Hasegawa, G., et al., Differential effects of remimazolam and propofol on heart rate variability during anesthesia induction. J Anesth, 2022. 36(2): p. 239-245.
43. El Beheiry, H. and P. Mak, Effects of aging and propofol on the cardiovascular component of the autonomic nervous system. J Clin Anesth, 2013. 25(8): p. 637-43.
44. Hu, C., D.J. Horstman, and S.L. Shafer, Variability of target-controlled infusion is less than the variability after bolus injection. Anesthesiology, 2005. 102(3): p. 639-45.
45. van den Nieuwenhuyzen, M.C., et al., Target-controlled infusion systems: role in anaesthesia and analgesia. Clin Pharmacokinet, 2000. 38(2): p. 181-90.
46. Vanini, G., et al., GABAergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation. Eur J Neurosci, 2014. 40(1): p. 2264-73.
47. Zhang, D. and Y. Wei, Distinct Neural Mechanisms Between Anesthesia Induction and Emergence: A Narrative Review. Anesth Analg, 2024.
48. Sifuzzaman, M., M.R. Islam, and M. Ali, Application of wavelet transform and its advantages compared to Fourier transform. Journal of Physical Sciences, 2009. 13: p. 121-134.
49. Wang, H.Y., et al., Strong Early Phase Parasympathetic Inhibition Followed by Sympathetic Withdrawal During Propofol Induction: Temporal Response Assessed by Wavelet-Based Spectral Analysis and Photoplethysmography. Front Physiol, 2021. 12: p. 705153.
50. Estafanous, F.G., et al., Analysis of heart rate variability to assess hemodynamic alterations following induction of anesthesia. J Cardiothorac Vasc Anesth, 1992. 6(6): p. 651-7.
51. Galletly, D.C., et al., Heart rate periodicities during induction of propofol-nitrous oxide-isoflurane anaesthesia. Br J Anaesth, 1992. 68(4): p. 360-4.
52. Win, N.N., et al., The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability. Anesth Analg, 2005. 101(1): p. 97-102, table of contents.
53. Zickmann, B., et al., Changes in heart rate variability during induction of anesthesia with fentanyl and midazolam. J Cardiothorac Vasc Anesth, 1996. 10(5): p. 609-13.
54. LaPierre, C.D., et al., An exploration of remifentanil-propofol combinations that lead to a loss of response to esophageal instrumentation, a loss of responsiveness, and/or onset of intolerable ventilatory depression. Anesth Analg, 2011. 113(3): p. 490-9.
55. Hendrickx, J.F., et al., Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesth Analg, 2008. 107(2): p. 494-506.
56. Diz, J.C., et al., Analysis of pharmacodynamic interaction of sevoflurane and propofol on Bispectral Index during general anaesthesia using a response surface model. Br J Anaesth, 2010. 104(6): p. 733-9.
57. Johnson, K.B., et al., An evaluation of remifentanil propofol response surfaces for loss of responsiveness, loss of response to surrogates of painful stimuli and laryngoscopy in patients undergoing elective surgery. Anesth Analg, 2008. 106(2): p. 471-9, table of contents.
58. Kim, W.H., H.J. Ahn, and J.A. Kim, Interactions of propofol and remifentanil on bispectral index under 66% N(2)O: analysis by dose-effect curve, isobologram, and combination index. Korean J Anesthesiol, 2010. 59(6): p. 371-6.
59. Steven E. Kern, P.D., et al., A Response Surface Analysis of Propofol–Remifentanil Pharmacodynamic Interaction in Volunteers. Anesthesiology, 2004. 100(6): p. 1373-81.
60. Martijn J. Mertens, M.D., Ph.D.,* Erik Olofsen, M.Sc.,† Frank H. M. Engbers, M.D.,* Anton G. L. Burm, M.Sc., Ph.D.,‡ James G. Bovill, M.D., Ph.D., F.F.A.R.C.S.I.,§ Jaap Vuyk, M.D., Ph.D., Propofol reduces perioperative remifentanil requirements in a synergistic manner response surface modeling of perioperative remifentanil-propofol interactions. Anesthesiology, 2003. 99(2): p. 347-59.
61. Heyse, B., et al., A response surface model approach for continuous measures of hypnotic and analgesic effect during sevoflurane-remifentanil interaction: quantifying the pharmacodynamic shift evoked by stimulation. Anesthesiology, 2014. 120(6): p. 1390-9.
62. Greco WR, B.G., Parsons JC., The search for synergy: a critical review from a response surface perspective. Pharmacol Rev, 1995. 47: p. 331-85.
63. Bol CJ, V.J., Tang JP, Mandema JW., Quantification of pharmacodynamic interactions between dexmedetomidine and midazolam in the rat. J Pharmacol Exp Ther, 2000. 294: p. 347–55.
64. Schnider, T.W., et al., The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology, 1998. 88(5): p. 1170-82.
65. Lin, C., et al., Robust Fetal Heart Beat Detection via R-peak Intervals Distribution. IEEE Trans Biomed Eng, 2019.
66. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 1996. 93(5): p. 1043-1065.
67. Babchenko, A., et al., Photoplethysmographic measurement of changes in total and pulsatile tissue blood volume, following sympathetic blockade. Physiol Meas, 2001. 22(2): p. 389-96.
68. Kim, C.W., Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery. Spine (Phila Pa 1976), 2010. 35(26 Suppl): p. S281-6.
69. Kern, S.E., et al., A response surface analysis of propofol-remifentanil pharmacodynamic interaction in volunteers. Anesthesiology, 2004. 100(6): p. 1373-81.
70. Ebert, T.J. and M. Muzi, Propofol and Autonomic Reflex Function in Humans. Anesthesia & Analgesia, 1994. 78(2): p. 369-375.
71. Tarvainen, M.P., et al., Heart rate variability dynamics during low-dose propofol and dexmedetomidine anesthesia. Ann Biomed Eng, 2012. 40(8): p. 1802-13.
72. Neukirchen, M. and P. Kienbaum, Sympathetic nervous system: evaluation and importance for clinical general anesthesia. Anesthesiology, 2008. 109(6): p. 1113-31.
73. Laso, L.F., et al., Manual vs. target-controlled infusion induction with propofol: An observational study☆. Colombian journal of anesthesiology, 2016. 44(4): p. 272-277.
74. Yildirim, S.A., et al., Hypotension after Anesthesia Induction: Target-Controlled Infusion Versus Manual Anesthesia Induction of Propofol. J Clin Med, 2023. 12(16).
75. Zheng, D., et al., The influence of the bolus injection rate of propofol on its cardiovascular effects and peak blood concentrations in sheep. Anesth Analg, 1998. 86(5): p. 1109-15.
76. Rather, Z.M., et al., The effect of propofol when injected at different speeds for induction of general anesthesia: an observational study. Int J Clin Trials, 2018. 5(2): p. 107.
77. Peacock, J.E., et al., Effect of different rates of infusion of propofol for induction of anaesthesia in elderly patients. Br J Anaesth, 1990. 65(3): p. 346-52.
78. Kato, M., et al., Spectral analysis of heart rate variability during isoflurane anesthesia. Anesthesiology, 1992. 77(4): p. 669-74.
79. Ebert, T.J. and M. Muzi, Propofol and autonomic reflex function in humans. Anesth Analg, 1994. 78(2): p. 369-75.
80. Guenoun, T., et al., Propofol-induced modifications of cardiomyocyte calcium transient and sarcoplasmic reticulum function in rats. Anesthesiology, 2000. 92(2): p. 542-9.
81. Ebert, T.J., et al., Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology, 1992. 76(5): p. 725-33.
82. Liu, N., et al., Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: closed-loop versus manual control: a prospective, randomized, multicenter study. Anesthesiology, 2006. 104(4): p. 686-95.
83. Gans, F., et al., Cross-modulated amplitudes and frequencies characterize interacting components in complex systems. Phys Rev Lett, 2009. 102(9): p. 098701.
84. Cnockaert, L., et al., A method for the analysis of respiratory sinus arrhythmia using continuous wavelet transforms. IEEE Trans.Biomed.Eng, 2008. 55(5): p. 1640-1642.
85. Keissar, K., L.R. Davrath, and S. Akselrod, Coherence analysis between respiration and heart rate variability using continuous wavelet transform. Philos Trans A Math Phys Eng Sci, 2009. 367(1892): p. 1393-406. |