博碩士論文 104888004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.116.80.68
姓名 王馨苡(Hsin-Yi Wang)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 麻醉監測技術進步與優化病人安全_應用小波頻譜分析麻醉動態自主神經反應
(Advancements in Anesthesia Techniques and Monitoring Technologies:Optimizing Patient Care and Safety)
相關論文
★ 不同麻醉深度之相位-振幅耦合量測及強度比較★ 設計及製作可攜式非侵入性心搏輸出量監測系統
★ 開發可攜式十二導程心電圖和聲學雙功能系統於居家分析心臟電生理訊號★ 應用非侵入性方法來探究透析過程中血流動力學變化及心血管疾病之預後
★ 開發具深度學習應用於自動追蹤耳膜功能之數位耳鏡於中耳炎輔助系統★ 反覆編曲結構音樂對人體生理訊號之影響
★ 設計具低功耗無線傳輸及結合人工智慧判讀之長時間聽診監測系統★ 實踐經驗模態分解於高度非穩態生理訊號之訊號特徵擷取
★ Exploring Beat-to-Beat Photoplethysmography Features at the Upper and Lower Extremities as Potential Biomarkers for Early Diagnosis of Peripheral Arterial Occlusive Disease: A Comparative study with Ultrasound Doppler and Ankle-Brachial Index★ 應用稀疏時頻表現式解析生理系統間非線性耦合機轉
★ 基於功能性近紅外光腦光譜與腦電圖發展多模態腦活動無線監測系統★ 脂質奈米顆粒在mRNA疫苗技術應用發展綜述
★ 自12導程心電圖擷取P波特徵辨識竇性心律下之 心房顫動高風險病患★ 探討以非侵入方式的影像心衝擊圖形態特徵來評估左心室射血分數 : 基於數學模型與臨床驗證的初步研究
★ 發展可用於肺部疾病患者呼吸音監測之高解析加速度陣列感測器★ 以光體積變化描記儀作為男性勃起功能及陰莖血液動力學及性功能客觀指標之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討了Propofol誘導過程中的自主神經系統反應及其與鴉片類藥物的藥效協同作用,使用小波頻譜分析(wavelet-based spectral analysis)進行高時間解析率分析。結果顯示,在Propofol bolus誘導的早期階段,副交感神經活動顯著被抑制,隨後交感神經才開始抑制,這表明Propofol對自主神經系統的不同層面的影響具有明顯的時序性特徵,這些發現與臨床觀察到的生命徵象一致。小波分析技術使我們能夠準確擷取到這些快速且複雜的變化,突顯了其在理解麻醉誘導過程中動態自主神經反應的重要性。
此外,還應用了基於機器學習的反應曲面模型來分析Propofol和鴉片類藥物對自主神經功能的協同藥效。高解析度的小波分析為反應曲面模型提供了詳細的數據,使我們能夠精準地分析這些藥物對自主神經系統的協同作用。結果顯示,Propofol與鴉片類藥物對自主神經功能抑制存在顯著的協同效應。這種協同作用的熱力學解釋表明,Propofol和鴉片類藥物的協同作用會提高麻醉深度,兩種藥物同時使用需要減少單一藥物的使用量,進而降低單一種高劑量藥物副作用風險,增強麻醉的安全性和有效性。
為尋求安全麻醉誘導方式,我們進一步比較不同給藥方式造成的自主神經影響。比較標靶控制輸注與傳統一次手動推注給藥,發現標靶控制輸注在麻醉早期誘導期間提供更穩定的自主神經反應。相反,一次性地給予誘導劑量會導致較大的自主神經波動。本研究更進一步研究Propofol與鴉片類藥物合併使用對自主神經的反應曲面模型。應用了小波分析技術在準確擷取自主神經反應的高時間解析度在麻醉上的優勢,為臨床麻醉劑量的優化提供新的見解,有助於提高麻醉的安全性和效果。未來的研究應進一步探討Propofol與鴉片類藥物的最佳劑量組合用法,以實現更加個體化和精確的麻醉臨床處置。
摘要(英) This study investigates the autonomic nervous system response during propofol induction and its pharmacodynamic synergy with opioids, combined with wavelet-based spectral analysis for high-resolution temporal assessment. Results demonstrate significant early-phase parasympathetic inhibition followed by sympathetic withdrawal during propofol bolus induction, indicating distinct temporal characteristics of propofol′s impact on the autonomic nervous system, consistent with clinical observations. Wavelet analysis accurately captures these rapid and complex changes, highlighting its importance in understanding dynamic autonomic responses during anesthesia induction.
Additionally, a machine-learning-based response surface model was utilized to analyze the synergistic pharmacodynamic effects of propofol and opioids on ANS function. High-resolution wavelet-based spectral analysis provided detailed data, enabling precise determination of drug interactions on the ANS. The findings reveal significant synergistic effects between propofol and opioids, enhancing anesthesia depth while reducing individual drug dosage. Thermodynamic analysis supports that this synergy improves anesthesia safety and efficacy by minimizing side effects.
Comparing target-controlled infusion and traditional manual bolus, target-controlled infusion showed fewer heart rate variability changes, providing more stable cardiovascular responses during early induction. In contrast, MB led to greater autonomic fluctuations, increased sympatho-vagal activity, decreased parasympathetic activity, and reduced peripheral sympathetic activity.
This study not only explores dynamic changes in ANS responses during propofol induction but also provides a machine-learning-based response surface model for the synergistic effects of propofol and opioids on ANS function. wavelet-based spectral analysis′s ability to capture high-resolution temporal patterns of autonomic responses offers critical insights into optimizing anesthesia dosing, enhancing anesthesia safety, and efficacy in clinical practice. Future research should further investigate optimal dosage combinations of propofol and opioids for personalized anesthesia management and explore alternative induction methods or drug combinations to broaden clinical applicability.
關鍵字(中) ★ 麻醉
★ 小波頻譜分析
★ 自主神經活性
★ 光體積變化描記圖法
★ 心律變異
關鍵字(英) ★ propofol anesthesia
★ autonomic nervous system
★ heart rate variability
★ pulse photoplethysmography
★ wavelet-based spectral analysis
論文目次 Table of contents
中文摘要 i
Abstract ii
Acknowledgements iv
Table of contents vi
圖目錄 ix
表目錄 xi
Chapter 1 Introduction and motives 1
Chapter 2 Literature search and review 4
2.1 Autonomic nervous system 4
2.1.1 Heart rate variability 5
2.1.2 Photoplethysmography 10
2.1.3Clinical Monitoring Systems for Autonomic Nervous System Activity 14
2.2 Anesthetic drugs 18
2.2.1Propofol 18
2.2.2 Opioids 23
2.3 Intravenous Drug Delivery Systems 25
2.3.1 Target Controlled Infusion (TCI) 27
2.4 Response Surface Model 29
2.4.1 Greco Model (two drug) 31
2.4.2 Minto Model (two drug and three drug) 32
2.4.3 Machine Learning-Based Response Surface Model 34
Chapter 3 Identifying Clinical Challenges 36
3.1. Autonomic Nervous System Response to Propofol Induction 36
3.1.1 Hemodynamic Stability 36
3.1.2 Conflicting Evidence 37
3.1.3 Measurement Methods 37
3.2 Ability of WBSA vs. FFT in Capturing Anesthetic Dynamics 37
3.2.1 Improved Time Resolution 37
3.2.2 Direct Measurement 37
3.2.3 Granular Analysis 37
3.3 Identifying Stable Anesthetic Induction Methods with WBSA Analysis 38
3.3.1 Target Controlled Infusion (TCI) 38
3.4 Utilizing Machine Learning-Based Response Surface Models (MLRSM) 38
3.4.1 Synergistic Effects of Anesthetic Combinations 38
3.4.2 Optimal Anesthesia Depth 39
Chapter 4 Methods 40
4.1 Subjects and Preparation 40
4.1.1 Propofol bolus only 40
4.1.2 Profol TCI infusion 41
4.1.3 Propofol bolus with fentanyl 42
4.2 Signal Acquisition and Processing 44
4.2.1 ECG data pre-processing 44
4.2.2 Continuous wavelet transform 45
4.2.3 Fourier analysis 46
4.2.4 Pulse photoplethysmography analysis and amplitude extraction 47
4.2.5 Data normalisation and analysis 48
4.3 Pharmacokinetic simulation and model derivation 48
4.3.1 Thermodynamic Interpretation 49
4.3.2 Machine Learning-Based Response Surface Model 51
4.3.3 Multi-drug MLRSM 53
4.3 Statistical analysis 56
4.3.1 Propofol bolus only, and compare with FFT 56
4.3.2 Profol TCI infusion, compare with bolus 57
Chapter 5 Results 59
5.1 Propofol bolus only 59
5.1.1 Demographic data 59
5.1.2 Signal Acquisition and Processing 60
5.1.3 Pharmacokinetic simulation 66
5.2 Propofol TCI infusion 67
5.2.1 Demographic data 67
5.2.2 Signal Acquisition, Processing, and analyses 67
5.2.3 Pharmacokinetic simulation 70
5.3 Thermodynamic Interpretation of the Response Surface Model 71
5.3.1 Demographic data 71
5.3.2 Validation and Visualization of the Single-Drug MLRSM 72
5.3.3 Two-drug MLRSM and What over the Conventional RSMs 74
Chapter 6 Discussion 79
6.1 The ability of WBSA vs. FFT in Capturing Anesthetic Dynamics 79
6.2 Identifying Stable Anesthetic Induction Methods with WBSA Analysis: 89
6.3 Pharmacodynamic Synergy between Propofol and Opioids 92
Chapter 7 Conclusion 96
References 98
Glossary 105
參考文獻 Vettorello, M., et al., Effect of fentanyl on heart rate variability during spontaneous and paced breathing in healthy volunteers. Acta Anaesthesiol Scand, 2008. 52(8): p. 1064-70.
2. Saxena, P.R. and I.L. Bonta, Mechanism of selective cardiac vagolytic action of pancuronium bromide. Specific blockade of cardiac muscarinic receptors. European Journal of Pharmacology, 1970. 11(3): p. 332-341.
3. Robinson, B.J., H.C. Buyck, and D.C. Galletly, Effect of propofol on heart rate, arterial pressure and digital plethysmograph variability. Br J Anaesth, 1994. 73(2): p. 167-73.
4. Gin, T., Prevention of hypotension after propofol for rapid sequence intubation. Can J Anaesth, 1996. 43(8): p. 877-8.
5. Colombo, R., et al., Pulse Photoplethysmographic Analysis Estimates the Sympathetic Activity Directed to Heart and Vessels. Anesthesiology, 2015. 123(2): p. 336-45.
6. Deutschman, C.S., A.P. Harris, and L.A. Fleisher, Changes in Heart Rate Variability Under Propofol Anesthesia: A Possible Explanation for Propofol-Induced Bradycardia. Anesthesia & Analgesia, 1994. 79(2): p. 373-377.
7. Maenpaa, M., et al., The effects of surgical levels of sevoflurane and propofol anaesthesia on heart rate variability. Eur J Anaesthesiol, 2007. 24(7): p. 626-33.
8. Win, N.N., et al., Haemodynamic changes and heart rate variability during midazolam-propofol co-induction. Anaesthesia, 2007. 62(6): p. 561-8.
9. Ahonen, J., et al., Surgical stress index reflects surgical stress in gynaecological laparoscopic day-case surgery. Br J Anaesth, 2007. 98(4): p. 456-61.
10. Hamunen, K., et al., Effect of pain on autonomic nervous system indices derived from photoplethysmography in healthy volunteers. Br J Anaesth, 2012. 108(5): p. 838-44.
11. Pomeranz, B., et al., Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol, 1985. 248(1 Pt 2): p. H151-3.
12. Frazier, T.W., M.E. Strauss, and S.R. Steinhauer, Respiratory sinus arrhythmia as an index of emotional response in young adults. Psychophysiology, 2004. 41(1): p. 75-83.
13. Malliani, A., et al., Cardiovascular neural regulation explored in the frequency domain. Circulation, 1991. 84(2): p. 482-92.
14. Montano, N., et al., Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation, 1994. 90(4): p. 1826-31.
15. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J, 1996. 17(3): p. 354-81.
16. Logier, R., et al., PhysioDoloris: a monitoring device for analgesia / nociception balance evaluation using heart rate variability analysis. Conf Proc IEEE Eng Med Biol Soc, 2010. 2010: p. 1194-7.
17. Blanik, N., et al., Hybrid optical imaging technology for long-term remote monitoring of skin perfusion and temperature behavior. J Biomed Opt, 2014. 19(1): p. 16012.
18. Huiku, M., et al., Assessment of surgical stress during general anaesthesia. Br J Anaesth, 2007. 98(4): p. 447-55.
19. Glen, J.B., Try, try, and try again: personal reflections on the development of propofol. Br J Anaesth, 2019. 123(1): p. 3-9.
20. Brown, E.N. and L.A. Santa Cruz, Multimodal General Anesthesia in Practice. Anesthesiology News, 2019(Oct): p. 49-59.
21. Purdon, P.L., et al., Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology, 2015. 123(4): p. 937-60.
22. Sahinovic, M.M., M. Struys, and A.R. Absalom, Clinical Pharmacokinetics and Pharmacodynamics of Propofol. Clin Pharmacokinet, 2018. 57(12): p. 1539-1558.
23. Singh, H., Bispectral index (BIS) monitoring during propofol-induced sedation and anaesthesia. Eur J Anaesthesiol, 1999. 16(1): p. 31-6.
24. Eleveld, D.J., et al., Pharmacokinetic-pharmacodynamic model for propofol for broad application in anaesthesia and sedation. Br J Anaesth, 2018. 120(5): p. 942-959.
25. Lischke, V., et al., Prolongation of the QT-interval during induction of anesthesia in patients with coronary artery disease. Acta Anaesthesiol Scand, 1994. 38(2): p. 144-8.
26. Schnider, T.W., et al., The influence of age on propofol pharmacodynamics. Anesthesiology, 1999. 90(6): p. 1502-16.
27. Marsh, B., et al., Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth, 1991. 67(1): p. 41-8.
28. Eleveld, D.J., et al., A general purpose pharmacokinetic model for propofol. Anesth Analg, 2014. 118(6): p. 1221-37.
29. Cortinez, L.I., et al., Performance of propofol target-controlled infusion models in the obese: pharmacokinetic and pharmacodynamic analysis. Anesth Analg, 2014. 119(2): p. 302-310.
30. Schnider, T.W., et al., Relationship Between Propofol Target Concentrations, Bispectral Index, and Patient Covariates During Anesthesia. Anesth Analg, 2021. 132(3): p. 735-742.
31. Vellinga, R., et al., General purpose models for intravenous anesthetics, the next generation for target-controlled infusion and total intravenous anesthesia? Curr Opin Anaesthesiol, 2023. 36(5): p. 602-607.
32. Minto, C.F., et al., Response surface model for anesthetic drug interactions. Anesthesiology, 2000. 92(6): p. 1603-16.
33. Greco, W.R., G. Bravo, and J.C. Parsons, The search for synergy: a critical review from a response surface perspective. Pharmacol Rev, 1995. 47(2): p. 331-85.
34. Bol, C.J., et al., Quantification of pharmacodynamic interactions between dexmedetomidine and midazolam in the rat. J Pharmacol Exp Ther, 2000. 294(1): p. 347-55.
35. Wong, K.C., Narcotics are not expected to produce unconsciousness and amnesia. Anesth Analg, 1983. 62(7): p. 625-6.
36. Lee, S.I., Drug interaction: focusing on response surface models. Korean J Anesthesiol, 2010. 58(5): p. 421-34.
37. Mallat, S., A Wavelet Tour of Signal Processing. 2nd ed. 2001.
38. Reich, D.L., et al., Intraoperative hemodynamic predictors of mortality, stroke, and myocardial infarction after coronary artery bypass surgery. Anesth Analg, 1999. 89(4): p. 814-22.
39. Frandsen, M.N., et al., Preoperative heart rate variability as a predictor of perioperative outcomes: a systematic review without meta-analysis. J Clin Monit Comput, 2022. 36(4): p. 947-960.
40. Kanaya, N., et al., Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology, 2003. 98(1): p. 34-40.
41. Cnockaert, L., et al., A method for the analysis of respiratory sinus arrhythmia using continuous wavelet transforms. IEEE Trans Biomed Eng, 2008. 55(5): p. 1640-2.
42. Hasegawa, G., et al., Differential effects of remimazolam and propofol on heart rate variability during anesthesia induction. J Anesth, 2022. 36(2): p. 239-245.
43. El Beheiry, H. and P. Mak, Effects of aging and propofol on the cardiovascular component of the autonomic nervous system. J Clin Anesth, 2013. 25(8): p. 637-43.
44. Hu, C., D.J. Horstman, and S.L. Shafer, Variability of target-controlled infusion is less than the variability after bolus injection. Anesthesiology, 2005. 102(3): p. 639-45.
45. van den Nieuwenhuyzen, M.C., et al., Target-controlled infusion systems: role in anaesthesia and analgesia. Clin Pharmacokinet, 2000. 38(2): p. 181-90.
46. Vanini, G., et al., GABAergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation. Eur J Neurosci, 2014. 40(1): p. 2264-73.
47. Zhang, D. and Y. Wei, Distinct Neural Mechanisms Between Anesthesia Induction and Emergence: A Narrative Review. Anesth Analg, 2024.
48. Sifuzzaman, M., M.R. Islam, and M. Ali, Application of wavelet transform and its advantages compared to Fourier transform. Journal of Physical Sciences, 2009. 13: p. 121-134.
49. Wang, H.Y., et al., Strong Early Phase Parasympathetic Inhibition Followed by Sympathetic Withdrawal During Propofol Induction: Temporal Response Assessed by Wavelet-Based Spectral Analysis and Photoplethysmography. Front Physiol, 2021. 12: p. 705153.
50. Estafanous, F.G., et al., Analysis of heart rate variability to assess hemodynamic alterations following induction of anesthesia. J Cardiothorac Vasc Anesth, 1992. 6(6): p. 651-7.
51. Galletly, D.C., et al., Heart rate periodicities during induction of propofol-nitrous oxide-isoflurane anaesthesia. Br J Anaesth, 1992. 68(4): p. 360-4.
52. Win, N.N., et al., The different effects of intravenous propofol and midazolam sedation on hemodynamic and heart rate variability. Anesth Analg, 2005. 101(1): p. 97-102, table of contents.
53. Zickmann, B., et al., Changes in heart rate variability during induction of anesthesia with fentanyl and midazolam. J Cardiothorac Vasc Anesth, 1996. 10(5): p. 609-13.
54. LaPierre, C.D., et al., An exploration of remifentanil-propofol combinations that lead to a loss of response to esophageal instrumentation, a loss of responsiveness, and/or onset of intolerable ventilatory depression. Anesth Analg, 2011. 113(3): p. 490-9.
55. Hendrickx, J.F., et al., Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesth Analg, 2008. 107(2): p. 494-506.
56. Diz, J.C., et al., Analysis of pharmacodynamic interaction of sevoflurane and propofol on Bispectral Index during general anaesthesia using a response surface model. Br J Anaesth, 2010. 104(6): p. 733-9.
57. Johnson, K.B., et al., An evaluation of remifentanil propofol response surfaces for loss of responsiveness, loss of response to surrogates of painful stimuli and laryngoscopy in patients undergoing elective surgery. Anesth Analg, 2008. 106(2): p. 471-9, table of contents.
58. Kim, W.H., H.J. Ahn, and J.A. Kim, Interactions of propofol and remifentanil on bispectral index under 66% N(2)O: analysis by dose-effect curve, isobologram, and combination index. Korean J Anesthesiol, 2010. 59(6): p. 371-6.
59. Steven E. Kern, P.D., et al., A Response Surface Analysis of Propofol–Remifentanil Pharmacodynamic Interaction in Volunteers. Anesthesiology, 2004. 100(6): p. 1373-81.
60. Martijn J. Mertens, M.D., Ph.D.,* Erik Olofsen, M.Sc.,† Frank H. M. Engbers, M.D.,* Anton G. L. Burm, M.Sc., Ph.D.,‡ James G. Bovill, M.D., Ph.D., F.F.A.R.C.S.I.,§ Jaap Vuyk, M.D., Ph.D., Propofol reduces perioperative remifentanil requirements in a synergistic manner response surface modeling of perioperative remifentanil-propofol interactions. Anesthesiology, 2003. 99(2): p. 347-59.
61. Heyse, B., et al., A response surface model approach for continuous measures of hypnotic and analgesic effect during sevoflurane-remifentanil interaction: quantifying the pharmacodynamic shift evoked by stimulation. Anesthesiology, 2014. 120(6): p. 1390-9.
62. Greco WR, B.G., Parsons JC., The search for synergy: a critical review from a response surface perspective. Pharmacol Rev, 1995. 47: p. 331-85.
63. Bol CJ, V.J., Tang JP, Mandema JW., Quantification of pharmacodynamic interactions between dexmedetomidine and midazolam in the rat. J Pharmacol Exp Ther, 2000. 294: p. 347–55.
64. Schnider, T.W., et al., The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology, 1998. 88(5): p. 1170-82.
65. Lin, C., et al., Robust Fetal Heart Beat Detection via R-peak Intervals Distribution. IEEE Trans Biomed Eng, 2019.
66. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 1996. 93(5): p. 1043-1065.
67. Babchenko, A., et al., Photoplethysmographic measurement of changes in total and pulsatile tissue blood volume, following sympathetic blockade. Physiol Meas, 2001. 22(2): p. 389-96.
68. Kim, C.W., Scientific basis of minimally invasive spine surgery: prevention of multifidus muscle injury during posterior lumbar surgery. Spine (Phila Pa 1976), 2010. 35(26 Suppl): p. S281-6.
69. Kern, S.E., et al., A response surface analysis of propofol-remifentanil pharmacodynamic interaction in volunteers. Anesthesiology, 2004. 100(6): p. 1373-81.
70. Ebert, T.J. and M. Muzi, Propofol and Autonomic Reflex Function in Humans. Anesthesia & Analgesia, 1994. 78(2): p. 369-375.
71. Tarvainen, M.P., et al., Heart rate variability dynamics during low-dose propofol and dexmedetomidine anesthesia. Ann Biomed Eng, 2012. 40(8): p. 1802-13.
72. Neukirchen, M. and P. Kienbaum, Sympathetic nervous system: evaluation and importance for clinical general anesthesia. Anesthesiology, 2008. 109(6): p. 1113-31.
73. Laso, L.F., et al., Manual vs. target-controlled infusion induction with propofol: An observational study☆. Colombian journal of anesthesiology, 2016. 44(4): p. 272-277.
74. Yildirim, S.A., et al., Hypotension after Anesthesia Induction: Target-Controlled Infusion Versus Manual Anesthesia Induction of Propofol. J Clin Med, 2023. 12(16).
75. Zheng, D., et al., The influence of the bolus injection rate of propofol on its cardiovascular effects and peak blood concentrations in sheep. Anesth Analg, 1998. 86(5): p. 1109-15.
76. Rather, Z.M., et al., The effect of propofol when injected at different speeds for induction of general anesthesia: an observational study. Int J Clin Trials, 2018. 5(2): p. 107.
77. Peacock, J.E., et al., Effect of different rates of infusion of propofol for induction of anaesthesia in elderly patients. Br J Anaesth, 1990. 65(3): p. 346-52.
78. Kato, M., et al., Spectral analysis of heart rate variability during isoflurane anesthesia. Anesthesiology, 1992. 77(4): p. 669-74.
79. Ebert, T.J. and M. Muzi, Propofol and autonomic reflex function in humans. Anesth Analg, 1994. 78(2): p. 369-75.
80. Guenoun, T., et al., Propofol-induced modifications of cardiomyocyte calcium transient and sarcoplasmic reticulum function in rats. Anesthesiology, 2000. 92(2): p. 542-9.
81. Ebert, T.J., et al., Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology, 1992. 76(5): p. 725-33.
82. Liu, N., et al., Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: closed-loop versus manual control: a prospective, randomized, multicenter study. Anesthesiology, 2006. 104(4): p. 686-95.
83. Gans, F., et al., Cross-modulated amplitudes and frequencies characterize interacting components in complex systems. Phys Rev Lett, 2009. 102(9): p. 098701.
84. Cnockaert, L., et al., A method for the analysis of respiratory sinus arrhythmia using continuous wavelet transforms. IEEE Trans.Biomed.Eng, 2008. 55(5): p. 1640-1642.
85. Keissar, K., L.R. Davrath, and S. Akselrod, Coherence analysis between respiration and heart rate variability using continuous wavelet transform. Philos Trans A Math Phys Eng Sci, 2009. 367(1892): p. 1393-406.
指導教授 林澂(Chen Lin) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明