博碩士論文 108296601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.141.24.158
姓名 阮氏安月(Nguyen Thi Anh Nguyet)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以氮化銦鎵量子井研製表面增益拉曼光譜
(Building Surface-Enhanced Raman Spectroscopy with InGaN Quantum Wells)
相關論文
★ 氮化物表面電漿生醫感測器之穩定化★ 以氮化銦鎵檢測循環腫瘤DNA
★ 以氮化物量子井製備的表面增益拉曼光譜檢測核鹼基★ 氮化物表面增益拉曼光譜於 肝纖維化判定的應用
★ CANCER DIAGNOSIS WITH HUMAN BLOOD PLASMA USING NITRIDE SURFACE-ENHANCED RAMAN SPECTROSCOPY
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) CHINESE ABSTRACT
表面增強拉曼散射 (Surface-enhanced Raman scattering, SERS) 非常靈敏,是極具
應用價值的檢測工具。然而,過去 30 多年以來,SERS 的臨床應用一直受限於其有限
的再現性。本研究提出一種新型 SERS 感測器,利用氮化銦鎵量子井 (quantum wells,
QW) 改善 SERS 在空間上和時間上的再現性,也提升訊號強度。
為了釐清 QW 在 SERS 中的作用,我們以 R6G (rhodamine 6G) 分子研究不同 QW
結構的 SERS 光譜,並發現 QW 提供高濃度表面電荷能以兩種方式提高 SERS 的效能:
i)增強共振強度; ii)擴大 SERS 熱點 (hot spots),進而形成熱面 (hot surface)。這些結果源
自於電荷轉移共振(charge-transfer resonance)和局域表面電漿共振(localized surface
plasmon resonance, LSPR)的增強。透過改變 QW 數量和表面形態,我們發現 SERS 的增
強因子(enhancement factor)與表面電子濃度呈現線性相關。此外,QW 裡的電子,能與
金奈米顆粒表面的電子共振,大幅增加熱點面積,產生大範圍的單分子訊號。
InGaN QWs 基板的獨特 SERS 性能被應用於循環腫瘤 DNA(circulating tumor
DNA, ctDNA)和葡萄糖的檢測。具體來說,透過結合鋁奈米結構和 QW,我們展現胰
臟癌 ctDNA 檢測的高靈敏、高特異和高穩定性。在葡萄糖方面,我們在複雜的細胞培
養液裡,觀察到不同濃度的葡萄糖(1-87 mM)訊號,驗證了 SERS 優越的特異性。此
外,我們更透過優化 InGaN QW 的能帶結構,觀察到胰臟癌和甲狀腺癌 ctDNA的 SERS
光譜差異。
我們相信,優化 QW的表面形態、厚度、摻雜濃度等參數,能持續推進 SERS 的
檢測效能,有助實現 SERS 的臨床應用。
摘要(英) ENGLISH ABSTRACT
Surface-enhanced Raman scattering (SERS) is a sensitive analysis tool for molecular
detection across various research fields. Nonetheless, the practical applications of SERS have
been impeded by its limited reproducibility for 30+ years. This work presents a novel SERS
sensor built with indium gallium nitride quantum wells (InGaN QWs), exhibiting greatly
improved reproducibility in space and time. Not only showing improved reproducibility, the
nitride QWs also deliver enhanced SERS intensity.
The roles of QW in SERS were investigated by detecting rhodamine 6G molecules on
the substrates with varied QW structures. It was found that the QWs improve SERS
performances via two routes: i) amplifying the SERS intensities and ii) forming the hot surface
by enlarging and interconnecting SERS-active regions. The two routes result from enhanced
effects of charge transfer resonance and localized surface plasmon resonance. Effective control
over electron distribution by QW number and surface morphology leads to a linear dependence
of SERS enhancement factor on surface electron concentration. In addition, QWs-induced
electrons were shown to coherently oscillate with those on gold nanoparticles, greatly enlarging
the hotspots and thus delivering the prevalent single-molecule signals.
The superior performance of InGaN QWs-based SERS substrates were applied to the
detection of circulating tumor deoxyribonucleic acid (ctDNA) and glucose. Specifically, by
combining aluminum nanostructures and QWs, we successfully achieved a sensitive (i.e.,
concentration of 10-13M), specific (single-base mismatch discrimination), and stable sensing of
ctDNA for pancreatic cancer diagnosis. Moreover, overcoming the challenges of low Raman
cross-section and complex environmental interference, we achieved an unprecedented detection
of glucose (1-87 mM) in culture cell medium, which was realized on gold nanostructures with
the QW-based hot surface. Furthermore, band-gap engineering of InGaN QWs led to enhanced
iii
SERS specificity, delivering distinct SERS signals of the two single-stranded ctDNA (10-5 M)
related to pancreatic and thyroid cancers.
These promising results can be further improved by optimizing the QW structures,
including surface morphology, well/barrier thickness, and doping concentration, paving the
way for practical applications of SERS biosensors.
關鍵字(中) ★ 面增益拉曼光譜
★ 氮化銦鎵量子井
★ 金屬有機化學氣相沉積
★ DNA
★ 癌症诊断
★ Plasmonic耦合
關鍵字(英) ★ Surface-Enhanced Raman spectroscopy
★ InGaN quantum wells
★ MOCVD
★ DNA
★ Cancer diagnosis
★ Plasmonic coupling
論文目次 TABLE OF CONTENTS
CHINESE ABSTRACT ..............................................................................................................i
ENGLISH ABSTRACT .............................................................................................................ii
ACKNOWLEDGEMENT.........................................................................................................iv
TABLE OF CONTENTS ...........................................................................................................v
LIST OF FIGURES..................................................................................................................vii
LIST OF TABLES .....................................................................................................................x
EXPLANATION OF ABBREVIATIONS................................................................................xi
Chapter 1. Introduction and Motivation .....................................................................................1
1.1. Surface – Enhanced Raman spectroscopy principles.......................................................1
1.1.1. The origin of Raman signal and Surface-enhanced Raman spectroscopy ................1
1.1.2. Signal enhancement mechanisms: Electromagnetic and Chemical mechanism .......3
1.1.3. SERS substrates and their applications in biology field ...........................................8
1.2. Indium Gallium Nitride Quantum well (InGaN QWs) and its carrier control ability ...11
1.2.1. Indium Gallium Nitride quantum wells formation..................................................11
1.2.2. InGaN QWs advantages in term of a SERS substrate building block ....................12
1.3. Motivation and thesis overview.....................................................................................15
1.4. List of publications ........................................................................................................16
Chapter 2. Controlling the Electron carrier concentration for SERS .......................................17
2.1. Introduction....................................................................................................................17
2.2. Experiment process........................................................................................................17
2.3. Results and discussion ...................................................................................................20
2.4. Conclusions....................................................................................................................27
Chapter 3. Catching Single Molecules by Plasmonic InGaN Quantum Dots..........................28
3.1. Introduction....................................................................................................................28
3.2. Experimental process.....................................................................................................29
3.3. Results and discussions..................................................................................................31
3.4. Conclusion .....................................................................................................................43
Chapter 4. Applications of InGaN – based SERS measurements on DNA and other
biomolecules.............................................................................................................................44
4.1. Circulating tumor DNA detection with conventional hybridization process ................44
4.1.1. Introduction .............................................................................................................44
4.1.2. Experimental process ..............................................................................................45
4.1.3. Results and discussions...........................................................................................47
4.1.4. Conclusions.............................................................................................................58
vi
4.2. Glucose detection...........................................................................................................59
Chapter 5. Controlling the Electron energy for SERS .............................................................63
5.1. Introduction....................................................................................................................63
5.2. Experimental process.....................................................................................................63
5.3. Results and discussion ...................................................................................................64
5.4. Conclusions....................................................................................................................71
Chapter 6. Summaries and future works ..................................................................................72
6.1. Summaries .....................................................................................................................72
6.2. Future works..................................................................................................................73
References ................................................................................................................................75
參考文獻 References
1. R. S. Das, and Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques
and applications”, Vib. Spectrosc. 57, 163-176, (2011).
2. C. Zong, M. Xu, L. J. Xu, T. Wei, X. Ma, X. S. Zheng, R. Hu, and B. Ren, “SurfaceEnhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges”, Chem. Rev.
118, 4946-4980, (2018).
3. V. Shvalya, G. Filipič, J. Zavašnik, I. Abdulhalim, and U. Cvelbar, “Surface-enhanced
Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The
relevance of interparticle spacing and surface morphology”, Appl. Phys. Rev. 7 (3),
031307, (2020).
4. A. I. Pérez-Jiménez, D. Lyu, Z. Lu, G. Liu, and B. Ren, “SERS: benefits, tradeoffs and
future developments”, Chem. Sci. 11, 4563-4577, (2020).
5. R. D. Rodriguez, E. Sheremet, M. Nesterov, S. Moras, M. Rahaman, T. Weiss, M.
Hietschold, and D. R.T. Zahn, “Aluminum and copper nanostructures for surfaceenhanced Raman spectroscopy: A one-to-one comparison to silver and gold”, Sens.
Actuators B Chem. 262, 922-927, (2018).
6. S. Tian, O. Neimann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, N. J.
Halas, “Aluminum Nanocrystals: A Sustainable Substrate for Quantitative SERS-Based
DNA Detection”, Nano Lett. 17, 5071−5077, (2017).
7. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold Nanorods and Their Plasmonic Properties”,
Chem. Soc. Rev. 42, 2679– 2724, (2013).
8. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia,
“Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes”, Nano
Lett. 5, 2034– 2038, (2005).
9. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized Surface
Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms”, Nano Lett.
6, 2060– 2065, (2006).
10. H. -L. Wu, H. -R. Tsai, Y. -T. Hung, K. -U. Lao, C. -W. Liao, P. -J. Chung, J. -S. Huang,
I. -S. Chen, and M. H. Huang, “A Comparative Study of Gold Nanocubes, Octahedra,
and Rhombic Dodecahedra as Highly Sensitive SERS Substrates”, Inorg. Chem. 50,
8106– 8111, (2011).
11. C. G. Khoury, and T. Vo-Dinh, “Gold Nanostars for Surface-Enhanced Raman Scattering:
Synthesis, Characterization and Optimization”, J. Phys. Chem. C 112, 18849– 18859,
(2008).
12. Z. Jiang, Q. Zhang, C. Zong, B. -J. Liu, B. Ren, Z. Xie, and L. Zheng, “Cu–Au Alloy
Nanotubes with Five-Fold Twinned Structure and Their Application in Surface-Enhanced
Raman Scattering”, J. Mater. Chem. 22, 18192– 18197, (2012).
13. W. Wei, S. Li, J. E. Millstone, M. J. Banholzer, X. Chen, X. Xu, G. C. Schatz, and C. A.
Mirkin, “Surprisingly Long-Range Surface-Enhanced Raman Scattering (SERS) on Au–
Ni Multisegmented Nanowires”, Angew. Chem. Int. Ed. 48, 4210– 4212, (2009).
14. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum
Nanodisk Plasmons: Material Independence, Subradiance, and Damping Mechanisms”,
ACS Nano. 5, 2535–2546, (2011).
76
15. M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-By-Layer
Assembly of Ag Nanowires into 3D Woodpile-like Structures to Achieve High Density
“Hot Spots” for Surface-Enhanced Raman Scattering”, Langmuir 29, 7061–7069, (2013).
16. J. -F. Li, Y. -J. Zhang, S. -Y. Ding, R. Panneerselvam, and Z. -Q. Tian, “Core–Shell
Nanoparticle-Enhanced Raman Spectroscopy”, Chem. Rev. 117, 5002–5069, (2017).
17. J. Chen, G. Liu, Y. Zhu, M. Su, P. Yin, X. Wu, Q. Lu, C. Tan, M. Zhao, Z. Liu, W. Yang,
H. Li, G.-H. Nam, L. Zhang, Z. Chen, X. Huang, P. M. Radjenovic, W. Huang, Z. Tian,
J. Li, and H. Zhang, “Ag@MoS2 Core–Shell Heterostructure as SERS Platform to Reveal
the Hydrogen Evolution Active Sites of Single-Layer MoS2”, J. Am. Chem. Soc. 142,
7161–7167, (2020).
18. Q. Fu, H. L. Liu, Z. Wu, A. Liu, C. Yao, X. Li, W. Xiao, S. Yu, Z. Luo, and Y. Tang,
“Rough surface Au@Ag core–shell nanoparticles to fabricating high sensitivity SERS
immunochromatographic sensors”, J Nanobiotechnol 13, 81, (2015).
19. F. Benz, R. Chikkaraddy, A. Salmon, H. Ohadi, B. de Nijs, J. Mertens, C. Carnegie, R.
W. Bowman, and J. J. Baumberg, “SERS of Individual Nanoparticles on a Mirror: Size
Does Matter, but so Does Shape”, J. Phys. Chem. Lett. 7, 2264–2269, (2016).
20. E. J. Kluender, M. R. Bourgeois, C. R. Cherqui, G. C. Schart, and C. A. Mirkin,
“Multimetallic Nanoparticles on Mirrors for SERS Detection”, J. Phys. Chem. C 125,
12784–12791, (2021).
21. H. Hu, Y. Xu, Z. Hu, B. Kang, Z. Zhang, J. Sun, Y. Li, and H. Xu, “Nanoparticle-onmirror pairs: building blocks for remote spectroscopies”, Nanophotonics 11, 5153-5163,
(2022).
22. W. H. Park, and Z. H. Kim, “Charge Transfer Enhancement in the SERS of a Single
Molecule”, Nano Lett. 10, 4040–4048, (2010).
23. Samriti, V. Rajput, R. K. Gupta, and J. Prakash, “Engineering metal oxide semiconductor
nanostructures for enhanced charge transfer: fundamentals and emerging SERS
applications”, J. Mater. Chem. C 10, 73-95, (2022).
24. A. Musumeci, D. Gosztola, T. Schiller, N. M. Dimitrijevic, V. Mujica, D. Martin, and T.
Rajh, “SERS of Semiconducting Nanoparticles (TiO2 Hybrid Composites)”, J. Am. Chem.
Soc. 131, 17, 6040–6041, (2009).
25. S. Adesoye, and K. Dellinger, “ZnO and TiO2 nanostructures for surface-enhanced
Raman scattering-based bio-sensing: A review”, Sens. Bio-Sens. Res. 37, 100499, (2022).
26. W. Shi, “SERS from ZnO nanorod arrays and its application for detecting N719”, ICST,
Wellington, New Zealand, 444-446, (2013).
27. S. Yang, J. Yao, Y. Quan, M. Hu, R. Su, M. Gao, D. Han, and J. Yang, “Monitoring the
charge-transfer process in a Nd-doped semiconductor based on photoluminescence and
SERS technology”, Light Sci Appl 9, 117 (2020).
28. S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang, Y. Su, Y. Zhang, L. Li, Q. Li, F. Geng, and
Z. Zhao, “Noble metal-comparable SERS enhancement from semiconducting metal
oxides by making oxygen vacancies”, Nat. Commun. 6, 7800 (2015).
29. L. -J. Gu, C. -L. Ma, X. -H. Zhang, W. Zhang, S. Cong, and Z. -G. Zhao, “Populating
surface – trapped electrons towards SERS enhancement of W18O49 nanowires”, Chem.
Commun. 54, 6332, (2018).
30. Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao,
“Semiconductor SERS enhancement enabled by oxygen incorporation”, Nat. Commun.
8, 1993, (2017).
77
31. Z. Zhao, X. Zhao, M. Zhang, and X. Sun, “Charge-Transfer Process in Surface-Enhanced
Raman Scattering Based on Energy Level Locations of Rare-Earth Nd3+
-Doped TiO2
Nanoparticles”, Nanomaterials (Basel). 11, 2063, (2021).
32. J. R. Lombardi, and R. L. Birke, “Theory of Surface-Enhanced Raman Scattering in
Semiconductors”, J. Phys. Chem. C 118, 11120–11130, (2014).
33. S. Siddhanta, V. Thakur, C. Narayana, and S. M. Shivaprasad, “Universal MetalSemiconductor Hybrid Nanostructured SERS Substrate for Biosensing”, ACS Appl.
Mater. Interfaces 4, 5807–5812, (2012).
34. J. L. Weyher, I. Dzięcielewski, A. Kamińska, T. Roliński, G. Nowak, and R. Hołyst,
“GaN-based platforms with Au-Ag alloyed metal layer for surface enhanced Raman
scattering”, J. Appl. Phys. 112, 114327, (2012).
35. S. Sharvani, K. Upadhayaya, G. Kumari, C. Narayana, S. M. Shivaprasad, “Nanomorphology induced additional surface plasmon resonance enhancement of SERS
sensitivity in Ag/GaN nanowall network”, Nanotechnology 26, 465701, (2015).
36. I. Dzięcielewski, J. Smalc-Koziorowska, M. Bańkowska, T. Sochacki, A. Khachapuridze,
and J. Weyher, “Impact of temperature-induced coalescence on SERS properties of Au
nanoparticles deposited on GaN nano-columns”, Appl. Surf. Sci. 378, 30-36, (2016).
37. J. L. Weyher, B. Bartosewicz, I. Dzięcielewski, J. Krajczewski, B. Jankiewicz, G. Nowak,
and A. Kudelskic, “Relationship between the nano-structure of GaN surfaces and SERS
efficiency: Chasing hot-spots”, Appl. Surf. Sci. 466, 554−561, (2019).
38. A. Kowalczyk, J. Krajczewski, A. Kowalik, J. L. Weyher, I. Dzięcielewski, M. Chłopek,
S. Góźdź, A. M. Nowicka, and A. Kudelski, “New strategy for the gene mutation
identification using surface enhanced Raman spectroscopy (SERS)”, Biosens.
Bioelectron. 132, 326−332, (2019).
39. World Health Organization, “Cancer”, December 20 2023, https://www.who.int/newsroom/fact-sheets/detail/cancer.
40. Y. H. Wang, Z. Song, X. Y. Hu, and H. S. Wang, “Circulating Tumor DNA Analysis for
Tumor Diagnosis”, Talanta 228, 122220, (2021).
41. X. Han, J. Wang, and Y. Sun, “Circulating Tumor DNA as Biomarkers for Cancer
Detection”, Genomics Proteomics Bioinformatics 15, 59-72, (2017).
42. B. Alberts, A. Johnson, J. Lewis, “Molecular Biology of the Cell. 4th edition”, New York:
Garland Gooding; (2002).
43. E. Pyrak, J. Krajczewski, A. Kowalik, A. Kudelski, and A. Jaworska, “Surface Enhanced
Raman Spectroscopy for DNA Biosensors-How Far Are We?”, Molecules. 24, 4423,
(2019).
44. C. Chen, W. Liu, S. Tian, and T. Hong, “Novel Surface-Enhanced Raman Spectroscopy
Techniques for DNA, Protein and Drug Detection”, Sensors 19, 1712, (2019).
45. E. Garcia-Rico, R. A. Alvarez-Puebla and L. Guerrini, “Direct surface-enhanced Raman
scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life
applications”, Chem. Soc. Rev. 47, 4909-4923, (2018).
46. T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, P. W Bohn, “Porous GaN as
A Template to Produce Surface-Enhanced Raman Scattering-Active Surfaces”, J. Phys.
Chem. B 109, 20186–20191, 2005.
47. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff,
L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, “TwoDimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization
Charges in N- and Ga-face AlGaN/GaN Heterostructures”, J. Appl. Phys. 85, 3222–3233,
(1999).
78
48. F. -C. Chien, T. F. Zhang, C. Chen, T. A. N. Nguyen, S. -Y. Wang, S. M. Lai, C. -H. Lin,
C. -K. Huang, C. -Y. Liu, K. -Y. Lai, “Nanostructured InGaN Quantum Wells as a
Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots.” ACS Appl.
Nano Mater. 4, 2614-2620, (2021).
49. S. Nakamura, “The roles of structural imperfections in InGaN based blue light – emitting
diodes and laser diodes”, Science 281, 956-961, (1998).
50. T. A. N. Nguyen, Y. -L. Yu, Y. C. Chang, Y. -H. Wang, W. -Y. Woon, C. -T. Wu, K. -L.
Lin, C. -Y. Liu, F. -C. Chien, and K. -Y. Lai, “Controlling the Electron Concentration for
Surface-Enhanced Raman Spectroscopy”, ACS Photonics 8, 2410–2416, (2021).
51. F. Y. Zhao, T. A. N. Nguyen, C. -W. Tsai, C. -M. Chu, W. -Y. Woon, C. -T. Wu, K. -L.
Lin, Y. -S. Huang, C. -M. Wang, F. -C. Chien, and K. -Y. Lai, “Catching Single
Molecules with Plasmonic InGaN Quantum Dots”, Adv. Optical Mater. 11, 2300431,
(2023).
52. L. Y. N. Phan, T. A. N. Nguyen, H. L. Chen, W. -Y. Chen, C. -J. Yang, F. -C. Chien, C.
-Y. Liu, and K. -Y. Lai, “Detecting glucose in a cell culture medium by surface-enhanced
Raman scattering on InGaN quantum wells”, Opt. contin. 2, 12, (2023).
53. Q. Zhang, X. Li, Q. Ma, Q. Zhang, H. Bai, W. Yi, J. Liu, J. Han, and G. A Xi, “Metallic
Molybdenum Dioxide with High Stability for Surface Enhanced Raman Spectroscopy”,
Nat. Commun. 8, 14903, (2017).
54. K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, “740-nm Emission
from InGaN-Based LEDs on c-Plane Sapphire Substrates by MOVPE”, J. Cryst. Growth
343, 13−16, (2012).
55. T. Hossain, D. Wei, J. H. Edgar, N. Y. Garces, N. Nepal, J. K. Hite, M. A. Mastro, C. R.
Jr. Eddy, and H. M. Meyer, “III Effect of GaN Surface Treatment on Al2O3/n-GaN MOS
Capacitors.” J. Vac. Sci. Technol. B 33, 061201, (2015).
56. E. V. Kalinina, N. I. Kuznetsov, V. A. Dmitriev, K. G. Irvine, and C. H. Carter, “Schottky
Barriers on n-GaN Grown on SiC”, J. Electron. Mater. 25, 831−834, (1996).
57. J. Cai, and F. A. Ponce, “Study of Charge Distribution Across Interfaces in
GaN/InGaN/GaN Single Quantum Wells Using Electron Holography”, J. Appl. Phys. 91,
9856−9862, (2002).
58. H. Watanabe, N. Hayazawa, Y. Inouye, S. Kawata, “DFT Vibrational Calculations of
Rhodamine 6G Adsorbed on Silver: Analysis of Tip-Enhanced Raman Spectroscopy”, J.
Phys. Chem. B 109, 5012−5020, (2005).
59. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, S. P. Den Baars, M.
Krames, “Coupling of InGaN Quantum-Well Photoluminescence to Silver Surface
Plasmons”, Phys. Rev. B. Condens. Matter Mater. Phys. 60, 1564−11567, (1999).
60. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “SurfacePlasmon-Enhanced Light Emitters Based on InGaN Quantum Wells”, Nat. Mater. 3,
601−605, (2004).
61. J. Xing, Y. Chen, Y. Liu, J. Liang, J. Chen, Y. Ren, X. Han, C. Zhong, H. Yang, D. Huang,
Y. Hou, Z. Wu, Y. Liu, B. Zhang, “Enhancement of Emission of InGaN/GaN MultipleQuantum-Well Nanorods by Coupling to Au-Nanoparticle Plasmons”, J. Appl. Phys. 123,
193101, (2018).
62. F. -C. Chien, J.- L. Lo, X. Zhang, E. Cubukcu, Y. -T. Luo, K. -L. Huang, X. Tang, C. -S.
Chen, C. -C. Chen, K. -Y. Lai, “Nitride-based Microarray Biochips: A New Route of
Plasmonic Imaging”, ACS. Appl. Mater. Interfaces 10, 39898−39903, (2018).
79
63. M. Ali Deeb, J. Ledig, J. Wei, X. Wang, H.-H. Wehmann, A. Waag, “Photo-assisted
Kelvin Probe Force Microscopy Investigation of Three Dimensional GaN Structures with
Various Crystal Facets, Doping Types, and Wavelengths of Illumination”, J. Appl. Phys.
122, 085307, (2017).
64. H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, and M. Chen, “Single
molecule detection from a large-scale SERS-active Au79Ag21 substrate”, Sci. Rep. 1, 112,
(2011).
65. S. Nie, and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by SurfaceEnhanced Raman Scattering”, Science 275, 1102, (1997).
66. A. Kudelski, and B. Pettinger, “SERS on carbon chain segments: monitoring locally
surface chemistry”, Chem. Phys. Lett. 2000, 321, 356.
67. E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of Single-Molecule Sensitivity in
Surface Enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique”, J.
Phys. Chem. B 110, 1944, (2006).
68. Y. Zheng, A. H. Soeriyadi, L. Rosa, S. H. Ng, U. Bach, and J. J. Gooding, “Reversible
gating of smart plasmonic molecular traps using thermoresponsive polymers for singlemolecule detection”, Nat. Commun. 6, 8797, (2015).
69. A. B. Zrimsek, N. L. Wong, and R. P. Van Duyne, “Single Molecule Surface-Enhanced
Raman Spectroscopy: A Critical Analysis of the Bianalyte versus Isotopologue Proof”, J.
Phys. Chem. C 120, 5133, (2016).
70. P. Mao, C. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, and S. Zhang, “Broadband
single molecule SERS detectiondesigned by warped optical spaces”, Nat. Commun. 9,
5428, (2018).
71. H. Y. Chen, M. H. Lin, C. Y. Wang, Y. M. Chang, and S. Gwo, “Large-Scale Hot Spot
Engineering for Quantitative SERS at the Single-Molecule Scale”, J. Am. Chem. Soc.
137, 13698, (2015).
72. Q. Zhao, H. Yang, B. Nie, Y. Luo, J. Shao, and G. Li, “Wafer-Scale and Cost-Effective
Manufacturing of Controllable Nanogap Arrays for Highly Sensitive SERS Sensing”,
ACS Appl. Mater. Interfaces 14, 3580, (2022).
73. T. Li, K. Wu, T. Rindzevicius, Z. Wang, L. Schulte, M. S. Schmidt, A. Boisen, and S.
Ndoni, “Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for
Surface-Enhanced Raman Spectroscopy”, ACS Appl. Mater. Interfaces 8, 15668, (2016).
74. M. E. Lin, B. N. Sverdlov, S. Strite, H. Morkoç, and A. E. Drakin, “Refractive indices of
wurtzite and zincblende GaN”, Electron. Lett. 29, 1759, (1993).
75. H. Vilchis, V. D. Compeán-García, I. E. Orozco-Hinostroza, E. López-Luna, M. A. Vidal,
and A. G. Rodríguez, “Complex refractive index of InXGa1-XN thin films grown on
cubic (100) GaN/MgO”, Thin Solid Films 626, 55, (2017).
76. David R. Lide, “CRC Handbook of Chemistry and Physics. (Special Student Edition): A
Ready-Reference Book of Chemical and Physical Data. 84th”, CRC-Press, (1995).
77. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y Kawakami, “Surface
plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by
time-resolved photoluminescence spectroscopy”, Appl. Phys. Lett. 87, 071102, (2005).
78. G. F. Yang, Q. Zhang, J. Wang, Y. N. Lu, P. Chen, Z. L. Wu, S. M. Gao, and G. Q. Chen,
“InGaN/GaN multiple quantum wells on selectively grown GaN microfacets and the
applications for phosphor-free white light-emitting diodes”, Rev. Phys. 1, 101-119,
(2016).
80
79. X. H.Wang, L. W. Guo, H. Q. Jia, Z. G. Xing, Y.Wang, X. J. Pei, J. M. Zhou, and H.
Chen, “Control performance of a single-chip white light emitting diode by adjusting strain
in InGaN underlying layer”, Appl. Phys. Lett. 94, 111913, (2009).
80. K. Y. Lai, T. Paskova, V. D. Wheeler, J. A. Grenko, M. A. L. Johnson, K. Udwary, E. A.
Preble, and K. R. Evans, “Effect of m-plane GaN substrate miscut on InGaN/GaN
quantum well growth”, J. Cryst. Growth 312, 902, (2010).
81. D. B. Grys, R. Chikkaraddy,M. Kamp, O. A. Scherman, J. J. Baumberg, and B. de Nijs,
“Eliminating irreproducibility in SERS substrates”, J. Raman Spectrosc. 52, 412, (2021).
82. P. Hildebrandt, and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy
of Rhodamine 6G adsorbed on colloidal silver”, J. Phys. Chem. 88, 5935, (1984).
83. R. Sancı, and M. Volkan, “Surface-enhanced Raman scattering (SERS) studies on silver
nanorod substrates”, Sens. Actuators. B 139, 150, (2009).
84. K. H. Lee, H. Jang, Y. S. Kim, C. H. Lee, S. H. Cho, M. Kim, H. Son, K. B. Bae, D. V.
Dao, Y. S. Jung, and I. H. Lee, “Synergistic SERS Enhancement in GaN-Ag Hybrid
System toward Label-Free and Multiplexed Detection of Antibiotics in Aqueous
Solutions”, Adv. Sci. 8, 2100640, (2021).
85. Q. Wang, X. Zhao, Z. Yu, R. Tan, and J. Lan, “Large scale preparation of surface
enhanced Raman spectroscopy substrates based on silver nanowires for trace chemical
detection”, Anal.Methods 7, 10359, (2015).
86. M. Ujihara, N. M. Dang, and T. Imae, “Surface-Enhanced Resonance Raman Scattering
of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles”,
Sensors 17, 2563, (2017).
87. P. Fulay, and J. K. Lee, “Electronic, Magnetic, and Optical Materials, 2nd ed.”, CRC
Press, Boca Raton, FL (2016).
88. F. Benz, M. K. Schmidt, A. Dreismann, R. Chikkaraddy, Y. Zhang, A. Demetriadou, C.
Carnegie, H. Ohadi, B. De Nijs, R. Esteban, J. Aizpurua, and J. Baumberg, “Singlemolecule optomechanics in "picocavities"”, Science 354, 726, (2016).
89. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J.
Aizpurua, Y. E. Luo, and J. L. Yang, “Chemical mapping of a single molecule by
plasmon-enhanced Raman scattering”, Nature 498, 82, (2013).
90. N. G. Quilis, M. Lequeux, P. Venugopalan, I. Khan, W. Knoll, S. Boujday, and J.
Dostalek, “Tunable laser interference lithography preparation of plasmonic nanoparticle
arrays tailored for SERS”, Nanoscale 10, 10268, (2018).
91. H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, and F. R.
Aussenegg, “Fluorescence imaging of surface plasmon fields”, Appl. Phys. Lett. 80, 404,
(2002).
92. F. J. Garcia-Vidal, and J. B. Pendry, “Collective Theory for Surface Enhanced Raman
Scattering”, Phys. Rev. Lett. 77, 1163, (1996).
93. P. Jiang, C. W. M. Chan, K. C. A. Chan, and Y. M. D. Lo, “Lengthening and shortening
of plasma DNA in hepatocellular carcinoma patients”, Proc. Natl. Acad. Sci. USA 112,
E1317−E1325, (2015).
94. H. Singh, D. L Longo, and B. A. Chabner, “Improving prospects for targeting RAS”, J.
Clin. Oncol. 33, 3650−3659, (2015).
95. Z. Zheng, X. Wang, G. Zheng, and J. Zhong, “Hadamard single-pixel imaging versus
Fourier single-pixel imaging”, Optica. 25, 19619–19639, (2017).
81
96. A. Escobet-Montalbán, R. Spesyvtsev, M. Z. Chen, W. A. Saber, M. Andrews, C. S.
Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through
scattering media without correction”, Sci. Adv. 4, eaau1338 (2018).
97. J. Zou, D. Kotchetkov, A. A. Balandin, D. I. Florescub, F. H. Pollak, “Thermal
conductivity of GaN films: Effects of impurities and dislocations”, J. Appl. Phys. 92,
2534−2539, (2002).
98. T. Bauer, T. Schmaltz, T. Lenz, M. Halik, B. Meyer, and T. Clark, “Phosphonate- and
carboxylate-based self-assembled monolayers for organic devices: a theoretical study of
surface binding on aluminum oxide with experimental support”, ACS Appl Mater
Interfaces. 5, 6073−6080, (2013).
99. N. E. Marotta, K. R. Beavers, and L. A. Bottomley, “Limitations of Surface Enhanced
Raman Scattering in Sensing DNA Hybridization Demonstrated by Label-Free DNA
Oligos as Molecular Rulers of Distance-Dependent Enhancement”, Anal. Chem. 85,
1440–1446, (2013).
100. M. Muhammad, and Q. Huang, “A review of aptamer-based SERS biosensors: Design
strategies and applications”, Talanta 227, 122188, (2021).
101. A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-Enhanced Raman
Spectroscopy of DNA”, J. Am. Chem. Soc. 130, 5523–5529, (2008).
102. A. Singh, and N. Singh, “Effect of salt concentration on the stability of heterogeneous
DNA”, Physica A: Stat. Mech. 419, 328−334, (2015).
103. Y. Gao, L. K. Wolf, and R. M. Georgiadis, “Secondary structure effects on DNA
hybridization kinetics: a solution versus surface comparison”, Nucleic Acids Res. 34,
3370−3377, (2006).
104. Y. Zhang, X. Mi, X. Tan, and R. Xiang, “Recent Progress on Liquid Biopsy Analysis
using Surface-Enhanced Raman Spectroscopy”, Theranostics. 9, 491−525, (2019).
105. J. Zhang, Y. Dong, W. Zhu, D. Xie, Y. Zhao, D. Yang, and M. Li, “Ultrasensitive
Detection of Circulating Tumor DNA of Lung Cancer via an Enzymatically Amplified
SERS-Based Frequency Shift Assay”, ACS Appl. Mater. Interfaces. 11, 18145−18152,
(2019).
106. L. Guerrini, Z. Krpetić, D. V. Lierop, R. A. Alvarez-Ppuebla, and D. Graham, “Direct
surface-enhanced Raman scattering analysis of DNA duplexes”, Angew. Chem. Int. Ed.
Engl. 54, 1144−1148, (2015).
107. H.-W. Tang, X. B. Yang, J. Kirkham, and D. A. Smith, “Probing Intrinsic and Extrinsic
Components in Single Osteosarcoma Cells by Near-Infrared Surface-Enhanced Raman
Scattering”, Anal. Chem. 79, 3646-3653, (2007).
108. M. Green, F.-M. Liu, L. Cohen, P. Kollensperger, and T. Cass, “SERS platforms for high
density DNA arrays”, Faraday Discuss. 132, 269–280, (2006).
109. H. M. Sapers, J. R. Hollis, R. Bhartia, L. W. Beegle, V. J. Orphan, and J. P. Amend, “The
Cell and the Sum of Its Parts: Patterns of Complexity in Biosignatures as Revealed by
Deep UV Raman Spectroscopy”, Front. Microbiol. 10, 679, (2019).
110. A. H. Nguyen, E. A. Peters, and Z. D. Schultz, “Bioanalytical applications of surfaceenhanced Raman spectroscopy: de novo molecular identification”, Rev Anal Chem. 36,
2016-0037, (2017).
111. S. Yang, X. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman
scattering detection in common fluids”, Proc. Natl. Acad. Sci. USA 113, 268−273, (2016).
82
112. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G.
Baraniuk, “Single-Pixel Imaging via Compressive Sampling”, IEEE Signal Process. Mag.
25, 83–91, (2008).
113. B. Kozma, E. Hirsch, S. Gergely, L. Párta, H. Pataki, and A. Salgó, “On-line prediction
of the glucose concentration of CHO cell cultivations by NIR and Raman spectroscopy:
comparative scalability test with a shake flask model system”, J. Pharm. Biomed. Anal.
145, 346–355 (2017).
114. M. F. Neurath, “COVID-19: biologic and immunosuppressive therapy in
gastroenterology and hepatology”, Nat. Rev. Gastroenterol. Hepatol. 18, 705–715 (2021).
115. M. A. Kreher, S. Konda, M. M. B. Noland, M. I. Longo, and R. Valdes-Rodriguez, “Risk
of melanoma and nonmelanoma skin cancer with immunosuppressants, part II:
methotrexate, alkylating agents, biologics, and small molecule inhibitors”, J. Am. Acad.
Dermatol. 88, 534–542 (2023).
116. A. W. Armstrong, K. Reich, P. Foley, C. Han, M, Song, Y. -K. Shen, Y. You, and K. A.
Papp, “Improvement in patient-reported outcomes (dermatology life quality index and
the psoriasis symptoms and signs diary) with guselkumab in moderate-to-severe plaque
psoriasis: results from the phase III VOYAGE 1 and VOYAGE 2 studies”, Am. J. Clin.
Dermatol. 20, 155–164 (2019).
117. K. Buckley, and A. G. Ryder, “Applications of Raman spectroscopy in biopharmaceutical
manufacturing: a short review”, Appl. Spectrosc. 71, 1085–1116 (2017).
118. M. O. McAnally, B. T. Phelan, R. M. Young, M. R. Wasielewski, G. C. Schatz, and R. P.
V. Duyne, “Quantitative determination of the differential Raman scattering cross sections
of glucose by femtosecond stimulated Raman scattering”, Anal. Chem. 89, 6931–6935
(2017).
119. I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum”, J.
Am. Chem. Soc. 40, 1361–1403 (1918).
120. R. Wang, H. Zou, R. Zheng, X. Feng, J. Xu, Y. Shangguan, S. Luo, W. Wei, D. Yang, W.
Luo, L. Duan, and H. Chen, “Molecular dynamics beyond the monolayer adsorption as
derived from Langmuir curve fitting”, Inorg Chem. 61, 7804–7812 (2022).
121. J. Tan, B. Du, C. Ji, M. Shao, X. Zhao, J. Yu, S. Xu, B. Man, C. Zhang, and Z. Li,
“Thermoelectric field-assisted Raman scattering and photocatalysis with GaN-plasmonic
metal composites”, ACS Photonics 10, 2216–2225 (2023).
122. W. -C. Lee, E. H. Koh, D. -H. Kim, S. -G. Park, and H. S. Jung, “Plasmonic contact lens
materials for glucose sensing in human tears”, Sens. Actuators B 344, 130297 (2021).
123. A. Desireddy, B. E. Conn, J. Guo, B. Yoon, R. N. Barnett, B. M. Monahan, K.
Kirschbaum, W. P. Griffith, R. L. Whetten, U. Landman, and T. P. Bigioni, “Ultrastable
silver nanoparticles”, Nature. 501, 399–402 (2013).
124. X. Huang, W. Zhao, X. Chen, J. Li, H. Ye, C. Li, X. Yin, X. Zhou, X. Qiao, Z. Xue, and
T. Wang, “Gold Nanoparticle-Bridge Array to Improve DNA Hybridization Efficiency
of SERS Sensors”, J. Am. Chem. Soc. 144, 17533-17539, (2022).
125. E. Kebebew, J. Weng, J. Bauer, G. Ranvier, O. H. Clark, Q. -Y. Duh, D. Shibru, B.
Bastian, and A. Griffin, “The prevalence and prognostic value of BRAF mutation in
thyroid cancer”, Ann Surg. 246, 466-471, (2007).
126. M. E. Vickers, M. J. Kappers, T. M. Smeeton, E. J. Thrush, J. S. Barnard, and C. J.
Humphreys, “Determination of the indium content and layer thicknesses in InGaN/GaN
quantum wells by x-ray scattering”, J. Appl. Phys. 94, 1565-1574, (2003).
83
127. T. Wernicke, L. Schade, C. Netzel, J. Rass, V. Hoffmann, S. Ploch, A. Knauer, M. Weyers,
U. Schwarz, and M. Kneissl, “Indium incorporation and emission wavelength of polar,
nonpolar and semipolar InGaN quantum wells”, Semicond. Sci. Technol. 27, 024014,
(2012).
128. D. Holec, P.M.F.J. Costa, M.J. Kappers, C.J. Humphreys, “Critical thickness calculations
for InGaN/GaN”, J. Cryst. Growth. 303, 314-317, (2007).
129. M. D. Fontana, K. B. Mabrouk, and T. H. Kauffmann, “Raman spectroscopic sensors for
inorganic salts”, Spectrosc. Prop. Inorg. Organomet. Compd. 44, 40-67 (2013).
130. W. Safar, A. Azziz, M. Edely, and M. L. de la. Chapelle, “Conventional Raman, SERS
and TERS studies of DNA compounds”, Chemosensors. 11, 399 (2023).
131. X. Fu, T. Jiang, Q. Zhao, and H. Yin, “Charge-transfer contributions in surface-enhanced
Raman scattering from Ag, Ag2S and Ag2Se substrates”, J Raman Spectrosc. 43, 1191-
1195 (2012).
132. V. V. Chaldyshev; A. S. Bolshakov; E. E. Zavarin; A. V. Sakharov; W. V. Lundin; A. F.
Tsatsulnikov; M. A. Yagovkina; T. Kim; Y. S. Park, “Optical lattices of InGaN quantum
well excitons”, Appl. Phys. Lett. 99, 251103 (2011).
133. T. Sadi, J. Oksanen, J. Tulkki, P. Mattila, and J. Bellessa, “The green’s function
description of emission enhancement in grated LED structures”, IEEE J. Sel. Top. 19, 1-
9 (2013).
134. D. Macdonald, E. Smith, K. Faulds, and D. Graham, “DNA detection by SERS:
hybridisation parameters and the potential for asymmetric PCR”, Analyst 145, 1871-1877
(2020).
指導教授 賴昆佑 簡汎清(Kun-Yu, Lai Fan-Ching, Chien) 審核日期 2024-4-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明