博碩士論文 110327004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.188.227.192
姓名 林哲毅(Zhe-Yi Lin)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 四軸飛行器單一馬達失效之辨識及控制方法
相關論文
★ 氣動馬達之單軸平台定位控制★ 運用MRAC及模糊法則於氣動馬達FPGA控制器之研發
★ 球型變焦鏡頭之研究★ 影像式多目標模擬器製作與平行光顯像系統設計
★ 連續式微電鍍之影像處理方法★ 硬體迴路測試系統建構與驗證
★ 即時影像引導連續式微電鍍之立體微結構製作研究★ 公共環境下人員追蹤影像方法研究
★ 燃料電池氫氣進料控制之研究★ 形狀記憶合金對焦系統之 基因演算法及模糊控制法則
★ 公共空間光源亮度模糊控制法則之研究★ 立方衛星無線通訊系統開發
★ 多重訊號同步擷取裝置整合研究★ 應用希爾伯特黃變換(HHT)之邊際譜分析於旋轉機械的元件鬆脫故障診斷
★ 總體經驗模態分解法(EEMD)結合自回歸(AR)模型在旋轉機械之元件鬆脫故障診斷之應用★ 超音波聚焦噴墨之能量驅動與分析研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-19以後開放)
摘要(中) 近年來,無人機商業化及軍事化越趨普遍,尤其典型的四軸飛行器應用最為廣泛。其僅需四個致動器就能完成全姿態運動,雖然本身為不穩定(unstable)、耦合(coupled)、欠驅動(underactuated)系統,但得益於其低成本、相對容易控制的特性,使其經常成為驗證控制理論或是實現應用的工具。
  由於系統有上述特性,一旦槳葉損壞或是馬達失效,便可能使飛行器因缺少自由度而無法控制部分姿態。主要應對方法為避免碰撞或以失效狀態進行控制,第一種通常在機身適當位置配有距離感測器,結合演算法進行避障,另一種則需先識別出失效模型,再以當前模型進行控制。
  本研究探討單顆馬達部分失效情況,在飛行過程模擬馬達故障,僅依靠姿態資料及直覺的旋轉誤差正負號判斷方式進行失效辨識,並使用P-PID控制及四軸飛行器耦合特性進行故障補償及控制。目標使飛行器在一定高度且缺少偏轉(yaw)自由度下進行故障控制。在高度為4 m時,馬達剩餘效率為0.8、0.6及0.2的情況下,落地前可將傾角控制在0.2 (rad)以內,且接觸地面時之衝量皆在 3.2 (kg ‧ m/s)內,以保證機身以水平姿態較慢地落地,並讓衝擊分散到四個機臂。
  實驗部分先透過假設來簡化系統,模擬從正常飛行到失效後的識別及控制情況,最後再以實際戶外飛行來驗證控制方法。
摘要(英) In recent years, the commercialization and militarization of unmanned arial vehicles (UAVs) have become increaseingly common, with quadcopters being particularly prevalent in various applications. Despite being inherently unstable, coupled, and underactuated systems, quadcopters benefit from their low cost and relatively easy controllability, which often makes them a tool for validating control theories or implementing applications.
Due to the aforementioned characteristics of the system, if a propeller blade is damaged or a motor fails, the aircraft may lose certain degrees of freedom and become uncontrollable in certain attitudes. The main approaches to address this issue are collision avoidance and control under failure conditions. The first approach typically involves equipping the aircraft with distance sensors at appropriate locations on the fuselage, combined with algorithms for obstacle avoidance. The second approach requires identifying the failure model first and then implementing control based on the current model.
This study investigates the partial failure of a single motor in a quadcopter. Motor failure is simulated during flight, and failure identification is conducted using only attitude data and an intuitive method of determining the sign of the rotational error. P-PID control and the coupling characteristics of the quadcopter are employed for fault compensation and control. The goal is to achieve fault control while maintaining the aircraft at a certain altitude and without the yaw degree of freedom. At an altitude of 4 meters, with remaining motor efficiencies of 0.8, 0.6, and 0.2, the tilt angle can be controlled within 0.2 radians before landing, and the impulse upon ground contact is kept within 3.2 (kg ‧ m/s). This ensures that the fuselage lands slowly in a horizontal attitude, allowing the impact to be distributed across the four arms.
In the experimental phase, the system is initially simplified through assumptions to simulate the identification and control process from normal flight to failure. Subsequently, the control methods are verified through actual outdoor flights.
關鍵字(中) ★ 四軸飛行器
★ 故障偵測及診斷
★ 故障容忍控制
★ STM32
★ PID控制
★ 實時作業系統
關鍵字(英) ★ quadrotor
★ Fault Detection and Diagnosis
★ Fault-Tolerant Control
★ STM32
★ PID control
★ RTOS
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
符號說明 xii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 文獻回顧 2
1-4 論文架構 3
第二章 基礎理論 4
2-1 四元數旋轉表示法 4
2-2 四軸飛行器動力系統 6
2-3 回授控制系統 8
2-4 數位控制系統 9
第三章 系統架構 11
3-1 飛行器架構 11
3-2 控制器及硬體周邊 12
3-2-1 微控制器 13
3-2-2 感測器 14
3-2-3 MicroSD卡 15
3-2-4 2.4G無線傳輸模組 16
3-2-5 控制器轉板 16
3-3 遙控器 18
3-4 實時作業系統(RTOS) 20
3-4-1 即時系統追蹤分析工具 20
3-4-2 任務介紹 21
第四章 研究方法 23
4-1 姿態解算 23
4-2 故障識別及控制方法 25
4-2-1 正常飛行之控制方法 25
4-2-2 故障識別方法 28
4-2-3 故障時之控制方法 29
4-3 故障識別及控制模擬 31
4-3-1 模擬相關介紹 31
4-3-2 模擬結果 34
4-3-2-1 η = 0.8 34
4-3-2-2 η = 0.6 41
4-3-2-3 η = 0.2 48
第五章 實驗結果與討論 55
5-1 η = 0.8 55
5-2 η = 0.6 59
5-3 η = 0.2 62
第六章 結論與未來展望 66
6-1 結論 66
6-2 未來展望 66
參考文獻 67
參考文獻 [1] J. G. Leishman, “Principles of Helicopter Aerodynamics with CD Extra”,
2nd Edn, London: Cambridge University Press, 2006
[2] S. N. Ghazbi, Y. Aghli, M. Alimohammadi, A. A. Akbari, “Quadrotors Unmanned Aerial Vehicles: A Review”, International Journal on Smart Sensing and Intelligent Systems, Vol. 9, No. 1, pp. 309-333, 2016
[3] G. K. Fourlas and G. C. Karras, “A Survey on Fault Diagnosis and Fault-Tolerant Control Methods for Unmanned Aerial Vehicles”, Machines, Vol. 9, No. 9, pp. 15-18, 2021
[4] M. H. Amoozgar, A. Vhamseddine, and Y. Zhang, “Experimental Test of a Two-Stage Kalman Filter for Actuator Fault Detection and Diagnosis of an Unmanned Quadrotor Helicopter”, Journal of Intelligent & Robotic Systems, Vol. 70, No. 1, pp. 107-117, 2013
[5] Y. Zhong, Y. Zhang, W. Zhang, and H. Zhan, “Actuator and Sensor Fault Detection and Diagnosis for Unmanned Quadrotor Helicopters”, International Federation of Automatic Control, Vol. 51, No. 14, pp. 998-1003, 2018
[6] V. Lippiello, F. Ruggiero, and D. Serra, “Emergency landing for a quadrotor in case of a propeller failure: A PID based approach”, 2014 IEEE International Symposium on Safety, Security, and Rescue Robotic , Hokkaido, Japan, pp. 1-7, 2014
[7] N. Fang, S. Sihao, F. Philipp, and S. Davide, “Nonlinear MPC for Quadrotor Fault-Tolerant Control”, IEEE Robotics and Automation Letters, Vol. 7, No. 2, pp. 5047-5054, 2022

[8] J. Vince, “Quaternions for Computer Graphics”, 2nd Edn, Springer, 2011
[9] N. Micheal, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp multiple micro-uav testbed”, IEEE Robotics & Automation Magazine, Vol. 17, No. 3, pp. 56-65, 2010
[10] N. H. Sahrir and M. A. Mohd Basri, “Modeling and Manual Tuning PID Control of Quadcopter”, Control Instrumentation and Mechatronics: Theory and Practice (pp. 346-357), Springer, 2022
[11] L. Martins, C. Cardeira, and P. Oliveira, “Linear quadratic regulator for trajectory tracking of quadrotor”, IFAC-PapersOnLine, Vol. 52, pp. 176-181, 2019
[12] M. Herrera, W. Chamorro, A. P. Gomez and O. Camacho, “Sliding mode control: An approach to control a quadrotor”, Asia-Pacific Conference on Computer Aided System Engineering, pp. 314-319, 2015
[13] I. D. Landau, G. Zito, “Digital Control Systems: Design, Identification and Implementation”, 1st Edn, Springer, 2006
[14] R. Mahony, T. Hamel, J.-M. Pflimlin, “Nonlinear complementary filters on special orthogonal group”, IEEE Trans. Autom. Control, Vol 53, No. 5, pp. 1203-1218, 2008
指導教授 黃衍任(Yean-Ren Huang) 審核日期 2024-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明