博碩士論文 110226012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.15.17.60
姓名 宋禮宏(Li-Hung Sung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以非序列追跡軟體模擬單光子放射顯微鏡 系統的針孔穿隧與影像矩陣建立
(Pinhole Tunneling Simulation in Single-Photon Emission Microscope by Non-sequential Ray Tracing and Imaging Matrix Establishment)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-4-1以後開放)
摘要(中) 本論文利用光學模擬軟體ASAP來模擬單光子放射顯微鏡系統(SPEM)的針孔穿隧效應。單光子放射顯微鏡系統的組成包括高空間解析度的針孔式準直儀、碘化銫閃爍晶體、電子增益電荷耦合元件(EMCCD)和高質量光影像縮倍管(DM Tube)。本論文主要是討論伽瑪射線在通過針孔時所產生的針孔穿隧效應,在非完全通過針孔而進入具有高衰減係數的針孔邊緣時,讓偵測器接收到比實際影像更大的投影點,進而對成像品質造成影響。本實驗用ASAP來模擬這種實際發生的影響,將模擬出的投影影像進行高斯模糊函數擬合進而建立出成像模型。
成像模型包含三種模型,即通量模型、寬度模型和主軸角度模型,並透過投影影像找到的投影重心即可建立出一個影像系統矩陣,用ASAP模擬出的針孔穿隧只要改變幾何參數及衰減係數,即可輕易的變更針孔的數量、位置與材料,來提升針孔設計的多樣性。將解析度假體不同投影角度的投影影像,利用以成像模型建立的影像系統矩陣及序列子集之期望值最大化演算法進行迭代運算,藉由重建出的圖像來評估影像系統的解析度,和建立出這個影像系統矩陣的針孔穿隧模型及成像模型的準確性。
摘要(英) This study utilizes the optical simulation software (Advanced Systems Analysis Program, ASAP) to simulate the pinhole tunneling effect in Single Photon Emission Microscope (SPEM). The SPEM system consists of a high spatial resolution pinhole collimator, a cesium iodide scintillation crystal, an Electron-Multiplying Charge-Coupled Device (EMCCD), and a high-quality optical image demagnifier (DM Tube). The main focus of this study is to discuss the pinhole tunneling effect caused by gamma rays passing through the pinhole. When gamma rays partially pass through the pinhole and enter the high-attenuation edge of the pinhole, the detector receives larger projections than the actual images, thus affecting the imaging quality. In this experiment, ASAP is used to simulate this actual effect. The simulated projection images are then fitted into Gaussian blur functions to establish an imaging model.
The imaging model consists of three components: the flux model, the width model, and the principal angle model. Additionally, by identifying the projected centroid from the projection images, an imaging system matrix can be established. The pinhole tunneling effect simulated by ASAP allows for easy adjustment of the pinhole′s quantity and position by simply changing the geometric parameters and attenuation coefficients, thereby enhancing the diversity of pinhole design. The projection images of a resolution phantom at different projection angles are reconstructed by using the image system matrix established by the imaging model and the ordered subset expectation maximization algorithm. The reconstructed images are then evaluated to assess the resolution of the imaging system and the accuracy of the pinhole tunneling model and the imaging system matrix.
關鍵字(中) ★ 針孔穿隧
★ 成像模型
★ 影像矩陣
關鍵字(英)
論文目次 目錄
摘要 iv
Abstract vi
目錄 viii
圖目錄 xi
表目錄 xvi
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 2
第二章 研究背景與基本原理 4
2.1 醫學影像 4
2.1.1 正子放射斷層掃描系統(PET) 6
2.1.2 單光子放射電腦斷層掃描系統(SPECT) 9
2.1.3 單光子放射顯微鏡系統(SPEM) 12
2.2 準直儀(Collimator) 14
2.3 閃爍晶體偵測器(Scintillation Detector) 17
2.4 光學模擬軟體ASAP 22
第三章 單光子放射顯微鏡系統模擬和影像重建 25
3.1 單光子放射顯微鏡系統模擬 25
3.1.1單光子放射顯微鏡系統建立 26
3.1.2蒙地卡羅模擬光線 28
3.1.3 模擬正向投影光追跡 29
3.2 影像系統矩陣與高斯內插結合幾何參數法 32
3.2.1 格點掃描實驗(Grid-scan Experiment) 34
3.2.2 正向投影函數高斯參數化 36
3.2.3 成像模型(Imaging Model) 38
3.3 影像重建演算法 45
3.3.1 最大可能性之期望值最大化演算法(Maximum-Likelihood Expectation Maximization, MLEM) 47
3.3.2 序列子集之期望值最大化演算法(Ordered-Subset Expectation Maximization, OSEM) 49
第四章 實驗和影像重建結果 51
4.1 正向投影模擬實驗 51
4.1.1 正向投影模擬實驗結果 51
4.1.2 簡化格點掃描實驗 56
4.2 建立成像模型 57
4.2.1 通量模型 57
4.2.2 寬度模型 61
4.2.3 主軸角度模型 71
4.2.4 影像系統矩陣的建立 79
4.3 影像重建結果 79
4.3.1 三點假體影像重建 80
4.3.2 一點兩桿假體影像重建 90
4.3.3 解析度假體影像重建 100
第五章 結論與未來展望 132
5.1 結論 132
5.2 未來展望 134
參考文獻 135
參考文獻 [1] S. R. Cherry and S. S. Gambhir, “Use of positron emission tomography in animal research,” ILAR Journal, vol. 42, no. 3, pp. 219-232, 2001.
[2] M. V. Green, J. Seidel, J. J. Vaquero, E. Jagoda, I. Lee, and W.C. Eckelman, “High resolution PET, SPECT and projection imaging in small animals,” Computerized Medical Imaging and Graphics, vol. 25, no. 2, pp. 79-86, 2001.
[3]Available:https://catalinaimaging.com/history-ct-scan/
[4] B. Y. Huang, System Calibration and Imaging Model Construction of Single Photon Emission Microscope, Master Thesis, National Central University, Taoyuan, Taiwan, 2017.
[5] M. N. Wernick and J. N. Aarsvold, Emission Tomography: The Fundamentals of PET and SPECT, Elsevier Academic Press, London, 2004.
[6] C. Y. Chen, Development of GPU-based Position Estimator and Image Reconstruction Algorithms for Micro-SPECT Systems, Master Thesis, National Central University, Taoyuan, Taiwan, 2014.
[7] M. A. D. Reis, J. Mejia, I. R. Batista, M. R. F. F. D. Barboza, and S. A. Nogueira, et al., “SPEM: A state-of-the-art instrument for high resolution molecular imaging of small animal organs,” SciELO Einstein (São Paulo), vol. 10, no. 2, pp. 209-215, 2012.
[8] J. Mejia, M. A. Reis, A. C. C. Miranda, I. R. Batista, and M. R. F. Barboza, et al.,“Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs, ” SciELOBrazilian Journal of Medical and Biological Research, vol. 46, no. 11, pp. 936-942, 2013.
[9] L. J. Meng, N. H. Clinthorne, S. Skinner, R. V. Hay, and M. Gross, “Design and feasibility study of a single photon emission microscope system for small animal I-125 imaging,”IEEE Transactions on Nuclear Science, vol. 53, no. 3, pp. 1168-1178, 2006.
[10] K. V. Audenhaege, R. van Holen, S. Vandenberghe, C. Vanhove, S. D. Metzler and S. C. Moore, “Review of SPECT collimator selection, optimization and fabrication for clinical and preclinical imaging,” Medical Physics, vol. 42, no. 8, pp. 4796-813, 2015.
[11] Y. R. Zheng, Performance Analysis of Signal Readout Methods for Tiled Gamma Cameras and Building of Pinhole Penetration Models, Master Thesis, National Central University, Taoyuan, Taiwan, 2014.
[12] A. P. Dhanasopon, C. S. Levin, A. M. K. Foudray, P. D. Olcott, J. A. Talcott, and F. Habte, “Scintillation crystal design features for a miniature gamma ray camera,” IEEE Nuclear Science Symposium Conference Record, vol. 5 pp. 1967-1971, 2003.
[13] M. A. Kupinski and H. H. Barrett, Small-Animal SPECT Imaging, Springer, New York, 2005.
[14] C. Fiorini, A. Longoni, F. Perotti, C. Labanti, P. Lechner, and L. Strüder, “Gamma ray spectroscopy with CsI(Tl) scintillator coupled to silicon drift chamber,” IEEE Transactions on Nuclear Science, vol. 44, no. 6, pp. 2553- 2560, 1997.
[15]Available:http://www.ysctech.com/digital-microscope-CCD-camerainfo.html
[16] L. J. Meng, “An intensified EMCCD camera for low energy gamma ray imaging applications,” IEEE Transactions on Nuclear Science, vol. 53, no. 4, pp. 2376-2384, August 2006.
[17]Available:http://uotek.com.tw/wp-content/uploads/ASAP-入門手冊-中文.pdf
[18] S. Raychaudhuri, "Introduction to Monte Carlo simulation," 2008 Winter Simulation Conference, Miami, FL, USA, 2008, pp.91-100
[19]Available:https://physics.nist.gov/PhysRefData/FFast/html/form.html
[20] M. F. Smith and R. J. Jaszczak, "An analytic model of pinhole aperture penetration for 3D pinhole SPECT image reconstruction," Physics in medicine and biology, vol. 43, no. 4, pp. 761-775, 1998.
[21] H. H. Barrett and K. J. Myers, Foundations of Image Science, Wiley Interscience, Hoboken, N. J., 2004.
[22] Lars R. Furenlid, Donald W. Wilson, Yi-chun Chen, Hyunki Kim, Philip J. Pietraski., “ FastSPECT II: a second-generation high-resolution dynamic SPECT imager,” IEEE Transactions on Nuclear Science, vol. 51, no. 3, pp. 631-635, 2004.
[23] M. W. Lee and Y. C. Chen, “Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations,” Elsevier Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 737, pp. 122-134, 2014.
[24] F. van der Have, B. Vastenhouw, M. Rentmeester, F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Transactions on Medical Imaging, vol. 27, no. 7, pp. 960-971, July 2008.
[25] C. C. Wu, Geometric Parameter Fitting and Imaging Model Improvement of Single Photon Emission Microscope, Master Thesis, National Central University, Taoyuan, Taiwan, 2021.
[26] L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113-122, 1982.
[27] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 601-609, 1994.
[28] D. S. Lalush and B. M. Tsui, “Performance of ordered-subset reconstruction algorithms under conditions of extreme attenuation and truncation in myocardial SPECT,” Journal of Nuclear Medicine, vol. 41, no. 4, pp. 737- 744, 2000.
[29] E. M. C. Revilla, System Calibration and Helical Reconstruction of Single Photon Emission Microscope, Master Thesis, National Central University, Taoyuan, Taiwan, 2018.
指導教授 陳怡君(Yi-Chun CHEN) 審核日期 2024-5-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明