參考文獻 |
[1] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, pp. 539-541, 1990.
[2] D. Baigent, R. Marks, N. Greenham, R. Friend, S. Moratti, and A. Holmes, "Conjugated polymer light‐emitting diodes on silicon substrates," Applied physics letters, vol. 65, no. 21, pp. 2636-2638, 1994.
[3] T. Chiba, Y.-J. Pu, and J. Kido, "Solution-processable electron injection materials for organic light-emitting devices," Journal of Materials Chemistry C, vol. 3, no. 44, pp. 11567-11576, 2015.
[4] M. Sessolo and H. J. Bolink, "Hybrid organic–inorganic light‐emitting diodes," Advanced Materials, vol. 23, no. 16, pp. 1829-1845, 2011.
[5] N. Tokmoldin, N. Griffiths, D. D. Bradley, and S. A. Haque, "A Hybrid Inorganic–Organic Semiconductor Light‐Emitting Diode Using ZrO2 as an Electron‐Injection Layer," Advanced Materials, vol. 21, no. 34, pp. 3475-3478, 2009.
[6] J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, "Transition metal oxides for organic electronics: energetics, device physics and applications," Advanced materials, vol. 24, no. 40, pp. 5408-5427, 2012.
[7] T. Virgili et al., "Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity," Physical Review B, vol. 83, no. 24, p. 245309, 2011.
[8] P. Michetti and G. La Rocca, "Polariton-polariton scattering in organic microcavities at high excitation densities," Physical Review B, vol. 82, no. 11, p. 115327, 2010.
[9] F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, and P. Schwendimann, "Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons," Physical Review B, vol. 56, no. 12, p. 7554, 1997.
[10] M. S. Bradley and V. Bulović, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B, vol. 82, no. 3, p. 033305, 2010.
[11] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical review letters, vol. 69, no. 23, p. 3314, 1992.
[12] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, no. 6697, pp. 53-55, 1998.
[13] M. Fox, "Optical properties of solids," ed: American Association of Physics Teachers, 2002.
[14] J. Kasprzak et al., "Bose–Einstein condensation of exciton polaritons," Nature, vol. 443, no. 7110, pp. 409-414, 2006.
[15] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, "Bose-Einstein condensation of microcavity polaritons in a trap," Science, vol. 316, no. 5827, pp. 1007-1010, 2007.
[16] D. Sanvitto and S. Kéna-Cohen, "The road towards polaritonic devices," Nature materials, vol. 15, no. 10, pp. 1061-1073, 2016.
[17] D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, "Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical review letters, vol. 82, no. 16, p. 3316, 1999.
[18] D. G. Lidzey, D. D. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, "Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities," Science, vol. 288, no. 5471, pp. 1620-1623, 2000.
[19] P. Schouwink, H. Von Berlepsch, L. Dähne, and R. Mahrt, "Observation of strong exciton–photon coupling in an organic microcavity in transmission and photoluminescence," Journal of luminescence, vol. 94, pp. 821-826, 2001.
[20] P. Schouwink, H. Berlepsch, L. Dähne, and R. Mahrt, "Dependence of Rabi-splitting on the spatial position of the optically active layer in organic microcavities in the strong coupling regime," Chemical physics, vol. 285, no. 1, pp. 113-120, 2002.
[21] N. Takada, T. Kamata, and D. D. Bradley, "Polariton emission from polysilane-based organic microcavities," Applied physics letters, vol. 82, no. 12, pp. 1812-1814, 2003.
[22] R. Oulton, N. Takada, J. Koe, P. Stavrinou, and D. Bradley, "Strong coupling in organic semiconductor microcavities," Semiconductor science and technology, vol. 18, no. 10, p. S419, 2003.
[23] R. Holmes and S. Forrest, "Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule," Physical review letters, vol. 93, no. 18, p. 186404, 2004.
[24] R. J. Holmes and S. R. Forrest, "Exciton-photon coupling in organic materials with large intersystem crossing rates and strong excited-state molecular relaxation," Physical Review B, vol. 71, no. 23, p. 235203, 2005.
[25] P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, "Solid state electrically injected exciton-polariton laser," Physical review letters, vol. 110, no. 20, p. 206403, 2013.
[26] 李正中, "薄膜光學與鍍膜技術," ed: 第四版, 藝軒圖書出版社, 2004.
[27] S. Kéna‐Cohen, S. A. Maier, and D. D. Bradley, "Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities," Advanced Optical Materials, vol. 1, no. 11, pp. 827-833, 2013.
[28] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of modern physics, vol. 82, no. 2, p. 1489, 2010.
[29] N. M. Peraca, A. Baydin, W. Gao, M. Bamba, and J. Kono, "Ultrastrong light–matter coupling in semiconductors," in Semiconductors and Semimetals, vol. 105: Elsevier, 2020, pp. 89-151.
[30] C. Ciuti, G. Bastard, and I. Carusotto, "Quantum vacuum properties of the intersubband cavity polariton field," Physical Review B, vol. 72, no. 11, p. 115303, 2005.
[31] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kéna-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling," ACS Photonics, vol. 5, no. 7, pp. 2921-2927, 2018.
[32] F. Le Roux and D. Bradley, "Conformational control of exciton-polariton physics in metal-poly (9, 9-dioctylfluorene)-metal cavities," Physical Review B, vol. 98, no. 19, p. 195306, 2018. |