博碩士論文 110226038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.223.237.218
姓名 黃明鴻(Ming-Hung Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 超強耦合共振腔之光致發光研究
(Photoluminescence study of Ultra-strongly coupled cavity)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-23以後開放)
摘要(中) 在本論文中,我們選用具有雙吸收峰的有機材料F8BT作為共振腔的主動層,建構出超強耦合共振腔架構。在該架構中,主動層同時擔任光子源以及激子源,這樣的設計使得我們能夠製作出具有更強耦合強度的元件,進而對其背後的物理現象進行詳細的探討。在共振腔中的光子與激子進行耦合作用時,會產生一種由光和物質所組成並有玻色子特性的混成態粒子,稱為偏極子。在具有雙吸收峰主動層的共振腔中,耦合作用會導致新的能量分支的形成,這些分支分別稱為上支、中支和下支。當共振腔中光子的能態與激子能態相同時,上支與下支之間的能量差被稱為拉比分裂。若拉比分裂大小超過激子能量的20 %時,則稱該共振腔達到了超強耦合。
在實驗開始前,我們會使用光學薄膜設計軟體Macleod來模擬各膜層的厚度,確保下支的位置正確對應到F8BT的光致發光PL位置,並且模擬出DBR布拉格反射鏡中的高低折射率材料的厚度。我們使用不同反射鏡的共振腔去探討其對耦合特性的影響,其中DBR布拉格反射鏡中心波長是設計在515 nm,高反射率頻寬僅包到F8BT的單吸收峰。最後結果得出不同反射鏡的共振腔均可以達到30 %附近的耦合強度,達到了超強耦合。使用不同功率的激發光源去激發DBR布拉格反射鏡共振腔,可以發現到隨著功率的增加,光譜上的能量會往低角度聚集,產生與雷射相同的特性。
摘要(英) In this paper ,we selected the organic material F8BT,which has dual absorption peaks,as the active layer of the resonant cavity to construct a Ultra-strongly coupled cavity structure. In this setup , the active layer functions as both the photon and exciton source . This design allows us to fabricate devices with increased coupling strength,enabling a detailed investigation of the underlying physical phenomena . When photons and excitons within the resonator couple , they from a hybrid state particle composed of light and matter , exhibiting bosonic characteristics , known as a polariton . In resonators with a dual-peak active layer , the coupling leads to the formation of new energy branches , referred to as the upper、middle and lower branches . When the photon and exciton energy states in the resonator align , the energy difference between the upper and lower branches is called the Rabi splitting . If the Rabi splitting exceeds 20 % of the exciton energy , the resonator is considered to have achieved strong coupling .
Before the experiment begins , we utilize the optical thin film design software Macleod to simulate the thickness of each layer , ensuring the lower branch correctly aligns with the photoluminescence (PL) position of F8BT , and to model the thicknesses of high and low refractive index materials in the Distributed Bragg Reflector (DBR) mirrors . We use resonators with different mirrors to explore their effects on coupling characteristics , where the central wavelength of the DBR mirrors is designed at 515 nm , and the high reflectance bandwidth only covers the single absorption peak of F8BT . The results show that resonators with different mirrors can achieve a coupling strength of about 30 % , indicating strong coupling . By exciting the DBR resonators with light sources of varying powers , we observe that as power increases , the energy on the spectrum concentrates towards lower angles , exhibiting characteristics similar to those of a laser .
關鍵字(中) ★ 超強耦合
★ 偏極子
★ 有機材料
關鍵字(英) ★ Ultra-strongly coupled
★ polariton
★ Organic material
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1高分子有機發光二極體 1
1-2有機偏極子共振腔元件 2
1-3研究動機 3
第二章 基本原理 4
2-1激子 4
2-2偏極子 4
2-3共振腔品質因子(Q-factor) 5
2-4 DBR反射鏡 5
2-5膜矩陣 7
2-5-1單層膜的膜矩陣 8
2-5-2多層膜的膜矩陣 10
2-6光子與激子的耦合特性 11
2-6-1光子模態 12
2-6-2哈密頓量 14
第三章 實驗製程與方法 21
3-1 元件材料 21
3-1-1 F8BT(Poly(9 , 9-dioctylfluorene-alt-benzothiadiazole)) 21
3-1-2 甲苯(Toluene) 21
3-2元件製程設備 21
3-2-1熱阻式蒸鍍系統(Thermal Evaporation Coater) 21
3-2-2手套箱(Glove Box) 23
3-2-3旋轉塗佈機(Spin Coater) 23
3-3元件量測設備 24
3-3-1紫外/可見/紅外光光譜儀 24
3-3-2積分球量測系統 25
3-3-3即時多角度光譜量測系統 26
3-4實驗步驟 29
3-4-1 玻璃基板的清洗 29
3-4-2 DBR布拉格反射鏡 29
3-4-3 共振腔的製程 30
第四章 實驗結果與討論 31
4-1 F8BT介紹 31
4-2 反射鏡 32
4-2-1 金屬反射鏡 32
4-2-2 DBR布拉格反射鏡 33
4-3 耦合元件 34
4-3-1 雙鋁共振腔 35
4-3-2 雙銀共振腔 39
4-3-3 DBR布拉格反射鏡共振腔 43
4-4 對不同反射鏡共振腔的討論與改善 47
第五章 結論與未來展望 49
參考文獻 50
參考文獻 [1] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, pp. 539-541, 1990.
[2] D. Baigent, R. Marks, N. Greenham, R. Friend, S. Moratti, and A. Holmes, "Conjugated polymer light‐emitting diodes on silicon substrates," Applied physics letters, vol. 65, no. 21, pp. 2636-2638, 1994.
[3] T. Chiba, Y.-J. Pu, and J. Kido, "Solution-processable electron injection materials for organic light-emitting devices," Journal of Materials Chemistry C, vol. 3, no. 44, pp. 11567-11576, 2015.
[4] M. Sessolo and H. J. Bolink, "Hybrid organic–inorganic light‐emitting diodes," Advanced Materials, vol. 23, no. 16, pp. 1829-1845, 2011.
[5] N. Tokmoldin, N. Griffiths, D. D. Bradley, and S. A. Haque, "A Hybrid Inorganic–Organic Semiconductor Light‐Emitting Diode Using ZrO2 as an Electron‐Injection Layer," Advanced Materials, vol. 21, no. 34, pp. 3475-3478, 2009.
[6] J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, and A. Kahn, "Transition metal oxides for organic electronics: energetics, device physics and applications," Advanced materials, vol. 24, no. 40, pp. 5408-5427, 2012.
[7] T. Virgili et al., "Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity," Physical Review B, vol. 83, no. 24, p. 245309, 2011.
[8] P. Michetti and G. La Rocca, "Polariton-polariton scattering in organic microcavities at high excitation densities," Physical Review B, vol. 82, no. 11, p. 115327, 2010.
[9] F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, and P. Schwendimann, "Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons," Physical Review B, vol. 56, no. 12, p. 7554, 1997.
[10] M. S. Bradley and V. Bulović, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B, vol. 82, no. 3, p. 033305, 2010.
[11] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical review letters, vol. 69, no. 23, p. 3314, 1992.
[12] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, no. 6697, pp. 53-55, 1998.
[13] M. Fox, "Optical properties of solids," ed: American Association of Physics Teachers, 2002.
[14] J. Kasprzak et al., "Bose–Einstein condensation of exciton polaritons," Nature, vol. 443, no. 7110, pp. 409-414, 2006.
[15] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, "Bose-Einstein condensation of microcavity polaritons in a trap," Science, vol. 316, no. 5827, pp. 1007-1010, 2007.
[16] D. Sanvitto and S. Kéna-Cohen, "The road towards polaritonic devices," Nature materials, vol. 15, no. 10, pp. 1061-1073, 2016.
[17] D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, "Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical review letters, vol. 82, no. 16, p. 3316, 1999.
[18] D. G. Lidzey, D. D. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, "Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities," Science, vol. 288, no. 5471, pp. 1620-1623, 2000.
[19] P. Schouwink, H. Von Berlepsch, L. Dähne, and R. Mahrt, "Observation of strong exciton–photon coupling in an organic microcavity in transmission and photoluminescence," Journal of luminescence, vol. 94, pp. 821-826, 2001.
[20] P. Schouwink, H. Berlepsch, L. Dähne, and R. Mahrt, "Dependence of Rabi-splitting on the spatial position of the optically active layer in organic microcavities in the strong coupling regime," Chemical physics, vol. 285, no. 1, pp. 113-120, 2002.
[21] N. Takada, T. Kamata, and D. D. Bradley, "Polariton emission from polysilane-based organic microcavities," Applied physics letters, vol. 82, no. 12, pp. 1812-1814, 2003.
[22] R. Oulton, N. Takada, J. Koe, P. Stavrinou, and D. Bradley, "Strong coupling in organic semiconductor microcavities," Semiconductor science and technology, vol. 18, no. 10, p. S419, 2003.
[23] R. Holmes and S. Forrest, "Strong exciton-photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule," Physical review letters, vol. 93, no. 18, p. 186404, 2004.
[24] R. J. Holmes and S. R. Forrest, "Exciton-photon coupling in organic materials with large intersystem crossing rates and strong excited-state molecular relaxation," Physical Review B, vol. 71, no. 23, p. 235203, 2005.
[25] P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, "Solid state electrically injected exciton-polariton laser," Physical review letters, vol. 110, no. 20, p. 206403, 2013.
[26] 李正中, "薄膜光學與鍍膜技術," ed: 第四版, 藝軒圖書出版社, 2004.
[27] S. Kéna‐Cohen, S. A. Maier, and D. D. Bradley, "Ultrastrongly Coupled Exciton–Polaritons in Metal‐Clad Organic Semiconductor Microcavities," Advanced Optical Materials, vol. 1, no. 11, pp. 827-833, 2013.
[28] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of modern physics, vol. 82, no. 2, p. 1489, 2010.
[29] N. M. Peraca, A. Baydin, W. Gao, M. Bamba, and J. Kono, "Ultrastrong light–matter coupling in semiconductors," in Semiconductors and Semimetals, vol. 105: Elsevier, 2020, pp. 89-151.
[30] C. Ciuti, G. Bastard, and I. Carusotto, "Quantum vacuum properties of the intersubband cavity polariton field," Physical Review B, vol. 72, no. 11, p. 115303, 2005.
[31] E. Eizner, J. Brodeur, F. Barachati, A. Sridharan, and S. Kéna-Cohen, "Organic photodiodes with an extended responsivity using ultrastrong light–matter coupling," ACS Photonics, vol. 5, no. 7, pp. 2921-2927, 2018.
[32] F. Le Roux and D. Bradley, "Conformational control of exciton-polariton physics in metal-poly (9, 9-dioctylfluorene)-metal cavities," Physical Review B, vol. 98, no. 19, p. 195306, 2018.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2024-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明