參考文獻 |
Akazawa, T. (2004, August). A technique for automatic detection of onset time of P-and S-phases in strong motion records. In Proc. of the 13th world conf. on earthquake engineering (Vol. 786, p. 786). Vancouver, Canada.
Allen, R. M., & Kanamori, H. (2003). The potential for earthquake early warning in southern California. Science, 300(5620), 786-789.
Allen, R. M., & Melgar, D. (2019). Earthquake early warning: Advances, scientific challenges, and societal needs. Annual Review of Earth and Planetary Sciences, 47, 361-388.
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the seismological society of America, 68(5), 1521-1532.
Bishop, C. M. (1994). Mixture density networks.
Bloemheuvel, S., van den Hoogen, J., Jozinović, D., Michelini, A., & Atzmueller, M. (2023). Graph neural networks for multivariate time series regression with application to seismic data. International Journal of Data Science and Analytics, 16(3), 317-332.
Böse, M., Felizardo, C., & Heaton, T. H. (2015). Finite-fault rupture detector (FinDer): Going real-time in Californian ShakeAlert warning system. Seismological Research Letters, 86(6), 1692-1704.
Böse, M., Heaton, T., & Hauksson, E. (2012). Rapid estimation of earthquake source and ground‐motion parameters for earthquake early warning using data from a single three‐component broadband or strong‐motion sensor. Bulletin of the Seismological Society of America, 102(2), 738-750.
Chen, D. Y., Lin, T. L., Hsu, H. C., Hsu, Y. C., & Hsiao, N. C. (2019). An approach to improve the performance of the earthquake early warning system for the 2018 Hualien earthquake in Taiwan. Terr. Atmos. Ocean. Sci, 30(3), 423-433.
Chen, D. Y., Wu, Y. M., & Chin, T. L. (2017). An empirical evolutionary magnitude estimation for early warning of earthquakes. Journal of Asian Earth Sciences, 135, 190-197.
Chiang, Y. J., Chin, T. L., & Chen, D. Y. (2022). Neural network-based strong motion prediction for on-site earthquake early warning. Sensors, 22(3), 704.
Chung, A. I., Henson, I., & Allen, R. M. (2019). Optimizing earthquake early warning performance: ElarmS‐3. Seismological Research Letters, 90(2A), 727-743.
Florez, M. A., Caporale, M., Buabthong, P., Ross, Z. E., Asimaki, D., & Meier, M. A. (2022). Data‐driven synthesis of broadband earthquake ground motions using artificial intelligence. Bulletin of the Seismological Society of America, 112(4), 1979-1996.
Geiger, L. (1912). Probability method for the determination of earthquake epicentres from the arrival time only. Bull. St. Louis Univ., 8, 60.
Gutenberg, B., & Richter, C. F. (1942). Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the Seismological society of America, 32(3), 163-191.
Hoshiba, M. (2013). Real‐time prediction of ground motion by Kirchhoff‐Fresnel boundary integral equation method: Extended front detection method for earthquake early warning. Journal of Geophysical Research: Solid Earth, 118(3), 1038-1050.
Hoshiba, M., & Aoki, S. (2015). Numerical shake prediction for earthquake early warning: Data assimilation, real‐time shake mapping, and simulation of wave propagation. Bulletin of the Seismological Society of America, 105(3), 1324-1338.
Hsu, T. Y., Kuo, C. H., Wang, H. H., Chang, Y. W., Lin, P. Y., & Wen, K. L. (2021). The realization of an earthquake early warning system for schools and its performance during the 2019 ML 6.3 Hualien (Taiwan) earthquake. Seismological Research Letters, 92(1), 342-351.
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
Jozinović, D., Lomax, A., Štajduhar, I., & Michelini, A. (2020). Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network. Geophysical Journal International, 222(2), 1379-1389.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kodera, Y., Yamada, Y., Hirano, K., Tamaribuchi, K., Adachi, S., Hayashimoto, N., ... & Hoshiba, M. (2018). The propagation of local undamped motion (PLUM) method: A simple and robust seismic wavefield estimation approach for earthquake early warning. Bulletin of the Seismological Society of America, 108(2), 983-1003.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., & Kuo, K. W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129, 68-75.
Kuyuk, H. S., & Allen, R. M. (2013). A global approach to provide magnitude estimates for earthquake early warning alerts. Geophysical Research Letters, 40(24), 6329-6333.
Lee, C. T., & Tsai, B. R. (2008). Mapping Vs30 in Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 6.
Lee, S. J., Yeh, T. Y., & Lin, Y. Y. (2016). Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: A synergy effect of source rupture and site amplification. Seismological Research Letters, 87(6), 1319-1326.
Liu, Kun-Sung, Tzay-Chyn Shin, and Yi-Ben Tsai. (1999). A free-field strong motion network in Taiwan: TSMIP. Terrestrial, Atmospheric and Oceanic Sciences, 10(2), 377-396.
Molnar, C. (2020). Interpretable machine learning. Lulu. com.
Münchmeyer, J., Bindi, D., Leser, U., & Tilmann, F. (2021). The transformer earthquake alerting model: A new versatile approach to earthquake early warning. Geophysical Journal International, 225(1), 646-656.
Rafiei, M. H., & Adeli, H. (2017). NEEWS: A novel earthquake early warning model using neural dynamic classification and neural dynamic optimization. Soil Dynamics and Earthquake Engineering, 100, 417-427.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wang, C. Y., Huang, T. C., & Wu, Y. M. (2022). Using LSTM neural networks for onsite earthquake early warning. Seismological Society of America, 93(2A), 814-826.
Wang, T., Trugman, D., & Lin, Y. (2021). SeismoGen: Seismic waveform synthesis using GAN with application to seismic data augmentation. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB020077.
Wu, Y. M., Hsiao, N. C., & Teng, T. L. (2004). Relationships between strong ground motion peak values and seismic loss during the 1999 Chi-Chi, Taiwan earthquake. Natural Hazards, 32(3), 357-373.
Wu, Y. M., Liang, W. T., Mittal, H., Chao, W. A., Lin, C. H., Huang, B. S., & Lin, C. M. (2016). Performance of a low‐cost earthquake early warning system (P‐alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake. Seismological Research Letters, 87(5), 1050-1059.
Wu, Y. M., Mittal, H., Chen, D. Y., Hsu, T. Y., & Lin, P. Y. (2021). Earthquake early warning systems in Taiwan: Current status. Journal of the Geological Society of India, 97, 1525-1532.
Wu, Y. M., Mittal, H., Huang, T. C., Yang, B. M., Jan, J. C., & Chen, S. K. (2019). Performance of a low‐cost earthquake early warning system (P‐Alert) and shake map production during the 2018 Mw 6.4 Hualien, Taiwan, earthquake. Seismological Research Letters, 90(1), 19-29.
Yang, B. M., Huang, T. C., & Wu, Y. M. (2018). ShakingAlarm: A nontraditional regional earthquake early warning system based on time‐dependent anisotropic peak ground‐motion attenuation relationships. Bulletin of the Seismological Society of America, 108(3A), 1219-1230.
林彥宇:《從TSMIP強震資料中解析2024花蓮地震震源特性》,交通部中央氣象署0403花蓮地震序列學術研討會 |