博碩士論文 111622007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.218.245.179
姓名 張杰宸(Chieh-Chen Chang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 開發深度學習技術的台灣轉換器震動警報模型 (TT-SAM)及其應用
(Developing a Deep Learning-Enabled Taiwan Transformer Shaking Alert Model (TT-SAM) and Its Implementation)
相關論文
★ 應用XGBoost模型建立台灣地殼強地震動衰減式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究提出一基於深度學習的端對端(end to end)區域型地震預警模型
「Taiwan Transformer Shaking Alert Model(TT-SAM)」。此模型考慮數個測站之地震波形,透過卷積神經網路(CNN)進行特徵擷取,結合受P 波觸發和目標測站位置和場址效應,在P 波抵達第一個測站後3 秒開始提供以PGA 為標準之預估震度圖。藉由調整靠近震央的地震紀錄在訓練流程中的權重和考慮場址效應,成功減緩高震度的低估問題。為探討此模型應用於台灣之可行性,以中央氣象署震度4 級(PGA>25cm/s2)作為預警標準,在測試集2016 年地震事件的預估表現中,精確率和召回率分別為75%和81%。在不同的P 波抵達第一個測站後之秒數,預估的精確率相近,而召回率隨著秒數增加而提升,在透過滾動式預警計算預警時間中,2016 年兩個規模 6.0 以上的美濃與台東外海地震,平均預警時間分別為16 秒和7 秒。為確認模型的可信任性,除了分析預估誤差的空間分佈,也分析CNN 特徵圖與數個震波物理參數之相關性,其中以垂直分量波形包絡線的相關性最高。除此之外,透過評估本文模型與氣象署預警系統之效能,提供預估震度與預警時間之比較結果。綜合以上,透過優化TT-SAM 架構,運用台灣地震資料重新訓練,其優勢為能夠快速且有效預估震度4級以上區域,並在後續提供模型解釋,以協助評估模型的可信任度。期望未來能透過持續引入更新的高震度資料微調模型以改善高震度低估問題,與將其架構延伸至預估PGV,以提供與實際災損分佈更相符之地震預警。
摘要(英) This study has referenced the Transformer Earthquake Alerting Model (TEAM), a deep learning earthquake early warning (EEW) framework. I optimized the model using seismic data from Taiwan to develop the Taiwan Transformer Shaking Alert Model (TT-SAM), and it could rapidly calculate the seismic intensity to provide longer warning time. The model utilized the Taiwan Strong Motion Instrumentation Program (TSMIP) database to obtain waveforms for events with a magnitude greater than 3.5 that occurred between 1999 and 2019. I split the dataset for model training and testing, the observations in 2016 were separated individually for the final evaluation. I cut the waveform initially triggered by the P-wave into a time window of 15 seconds, and other triggered stations′ waveforms in these 15 seconds will also be included. The model extracts waveform features through a convolution neural network (CNN), while the transformer encoder builds the relationship between features and station location. At the end of the model, a mixture density network was implemented to predict ground shaking by probability density functions. A warning threshold at 25 cm/s2 in PGA was set, corresponding to Central Weather Administration (CWA) intensity IV, to validate the model′s performance with 2016 data. The result shows that precision and recall are 75% and 81%, respectively. While utilizing the rolling warning method, it′s noteworthy that the average lead time for the 2016 Mw6.4 Meinong event and Mw6.1 Taitung offshore event stand at 16 and 7 seconds, respectively. In order to validate model’s reliability, I analyzed not only the residual of predicted PGA at different station also the correlation between the feature map from CNN and other waveform physical attributes, e.g., waveform envelope. The objective is to improve the efficiency and dependability of AI-based EEW in Taiwan. In addition, evaluating the performance of the TT-SAM model and the CWA EEW system provides comparative results of estimated seismic intensity and warning time. In summary, by optimizing the TT-SAM framework and retraining it with Taiwan′s earthquake data, the model can quickly and effectively predict areas with a seismic intensity of 4 and above. Additionally, it provides model explanations to help assess the model′s reliability. In the future, the goal is to continually fine-tune the model with updated high-intensity data to address the issue of high intensity underestimation. The TT-SAM framework could also extend to predict PGV, thereby offering earthquake warnings that more closely align with actual damage distribution.
關鍵字(中) ★ 地震預警
★ 深度學習
關鍵字(英) ★ Earthquake early warning
★ Deep learning
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1-1 地震預警 1
1-2 台灣地震預警的發展 2
1-3 基於深度學習的地震預警模型 4
1-4 本文範疇 5
第二章 研究資料 10
2-1 地震目錄與篩選 10
2-2 地震波形與前處理 11
2-3 Vs30 13
第三章 研究方法 23
3-1 人工神經網路 23
3-2 TT-SAM模型架構 24
3-3 模型訓練流程 27
第四章 研究結果 38
4-1 優化超參數 38
4-2 震度預估表現 39
4-3 預警時間 41
第五章 討論 57
5-1 誤差空間分佈 57
5-2 Bias to Close Station方法優化震度預估表現 58
5-3 與氣象署區域型預警比較 58
5-4 2023年9月18日規模6.8基隆外海地震 59
5-5 2024年4月3日規模7.2花蓮地震 59
5-6 波形特徵擷取的可解釋性 60
5-7 高震度低估問題 61
第六章 結論與建議 78
參考文獻 80
附錄A 85
參考文獻 Akazawa, T. (2004, August). A technique for automatic detection of onset time of P-and S-phases in strong motion records. In Proc. of the 13th world conf. on earthquake engineering (Vol. 786, p. 786). Vancouver, Canada.
Allen, R. M., & Kanamori, H. (2003). The potential for earthquake early warning in southern California. Science, 300(5620), 786-789.
Allen, R. M., & Melgar, D. (2019). Earthquake early warning: Advances, scientific challenges, and societal needs. Annual Review of Earth and Planetary Sciences, 47, 361-388.
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the seismological society of America, 68(5), 1521-1532.
Bishop, C. M. (1994). Mixture density networks.
Bloemheuvel, S., van den Hoogen, J., Jozinović, D., Michelini, A., & Atzmueller, M. (2023). Graph neural networks for multivariate time series regression with application to seismic data. International Journal of Data Science and Analytics, 16(3), 317-332.
Böse, M., Felizardo, C., & Heaton, T. H. (2015). Finite-fault rupture detector (FinDer): Going real-time in Californian ShakeAlert warning system. Seismological Research Letters, 86(6), 1692-1704.
Böse, M., Heaton, T., & Hauksson, E. (2012). Rapid estimation of earthquake source and ground‐motion parameters for earthquake early warning using data from a single three‐component broadband or strong‐motion sensor. Bulletin of the Seismological Society of America, 102(2), 738-750.
Chen, D. Y., Lin, T. L., Hsu, H. C., Hsu, Y. C., & Hsiao, N. C. (2019). An approach to improve the performance of the earthquake early warning system for the 2018 Hualien earthquake in Taiwan. Terr. Atmos. Ocean. Sci, 30(3), 423-433.
Chen, D. Y., Wu, Y. M., & Chin, T. L. (2017). An empirical evolutionary magnitude estimation for early warning of earthquakes. Journal of Asian Earth Sciences, 135, 190-197.
Chiang, Y. J., Chin, T. L., & Chen, D. Y. (2022). Neural network-based strong motion prediction for on-site earthquake early warning. Sensors, 22(3), 704.
Chung, A. I., Henson, I., & Allen, R. M. (2019). Optimizing earthquake early warning performance: ElarmS‐3. Seismological Research Letters, 90(2A), 727-743.
Florez, M. A., Caporale, M., Buabthong, P., Ross, Z. E., Asimaki, D., & Meier, M. A. (2022). Data‐driven synthesis of broadband earthquake ground motions using artificial intelligence. Bulletin of the Seismological Society of America, 112(4), 1979-1996.
Geiger, L. (1912). Probability method for the determination of earthquake epicentres from the arrival time only. Bull. St. Louis Univ., 8, 60.
Gutenberg, B., & Richter, C. F. (1942). Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the Seismological society of America, 32(3), 163-191.
Hoshiba, M. (2013). Real‐time prediction of ground motion by Kirchhoff‐Fresnel boundary integral equation method: Extended front detection method for earthquake early warning. Journal of Geophysical Research: Solid Earth, 118(3), 1038-1050.
Hoshiba, M., & Aoki, S. (2015). Numerical shake prediction for earthquake early warning: Data assimilation, real‐time shake mapping, and simulation of wave propagation. Bulletin of the Seismological Society of America, 105(3), 1324-1338.
Hsu, T. Y., Kuo, C. H., Wang, H. H., Chang, Y. W., Lin, P. Y., & Wen, K. L. (2021). The realization of an earthquake early warning system for schools and its performance during the 2019 ML 6.3 Hualien (Taiwan) earthquake. Seismological Research Letters, 92(1), 342-351.
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
Jozinović, D., Lomax, A., Štajduhar, I., & Michelini, A. (2020). Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network. Geophysical Journal International, 222(2), 1379-1389.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kodera, Y., Yamada, Y., Hirano, K., Tamaribuchi, K., Adachi, S., Hayashimoto, N., ... & Hoshiba, M. (2018). The propagation of local undamped motion (PLUM) method: A simple and robust seismic wavefield estimation approach for earthquake early warning. Bulletin of the Seismological Society of America, 108(2), 983-1003.
Kuo, C. H., Wen, K. L., Hsieh, H. H., Lin, C. M., Chang, T. M., & Kuo, K. W. (2012). Site classification and Vs30 estimation of free-field TSMIP stations using the logging data of EGDT. Engineering Geology, 129, 68-75.
Kuyuk, H. S., & Allen, R. M. (2013). A global approach to provide magnitude estimates for earthquake early warning alerts. Geophysical Research Letters, 40(24), 6329-6333.
Lee, C. T., & Tsai, B. R. (2008). Mapping Vs30 in Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 6.
Lee, S. J., Yeh, T. Y., & Lin, Y. Y. (2016). Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: A synergy effect of source rupture and site amplification. Seismological Research Letters, 87(6), 1319-1326.
Liu, Kun-Sung, Tzay-Chyn Shin, and Yi-Ben Tsai. (1999). A free-field strong motion network in Taiwan: TSMIP. Terrestrial, Atmospheric and Oceanic Sciences, 10(2), 377-396.
Molnar, C. (2020). Interpretable machine learning. Lulu. com.
Münchmeyer, J., Bindi, D., Leser, U., & Tilmann, F. (2021). The transformer earthquake alerting model: A new versatile approach to earthquake early warning. Geophysical Journal International, 225(1), 646-656.
Rafiei, M. H., & Adeli, H. (2017). NEEWS: A novel earthquake early warning model using neural dynamic classification and neural dynamic optimization. Soil Dynamics and Earthquake Engineering, 100, 417-427.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wang, C. Y., Huang, T. C., & Wu, Y. M. (2022). Using LSTM neural networks for onsite earthquake early warning. Seismological Society of America, 93(2A), 814-826.
Wang, T., Trugman, D., & Lin, Y. (2021). SeismoGen: Seismic waveform synthesis using GAN with application to seismic data augmentation. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB020077.
Wu, Y. M., Hsiao, N. C., & Teng, T. L. (2004). Relationships between strong ground motion peak values and seismic loss during the 1999 Chi-Chi, Taiwan earthquake. Natural Hazards, 32(3), 357-373.
Wu, Y. M., Liang, W. T., Mittal, H., Chao, W. A., Lin, C. H., Huang, B. S., & Lin, C. M. (2016). Performance of a low‐cost earthquake early warning system (P‐alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake. Seismological Research Letters, 87(5), 1050-1059.
Wu, Y. M., Mittal, H., Chen, D. Y., Hsu, T. Y., & Lin, P. Y. (2021). Earthquake early warning systems in Taiwan: Current status. Journal of the Geological Society of India, 97, 1525-1532.
Wu, Y. M., Mittal, H., Huang, T. C., Yang, B. M., Jan, J. C., & Chen, S. K. (2019). Performance of a low‐cost earthquake early warning system (P‐Alert) and shake map production during the 2018 Mw 6.4 Hualien, Taiwan, earthquake. Seismological Research Letters, 90(1), 19-29.
Yang, B. M., Huang, T. C., & Wu, Y. M. (2018). ShakingAlarm: A nontraditional regional earthquake early warning system based on time‐dependent anisotropic peak ground‐motion attenuation relationships. Bulletin of the Seismological Society of America, 108(3A), 1219-1230.
林彥宇:《從TSMIP強震資料中解析2024花蓮地震震源特性》,交通部中央氣象署0403花蓮地震序列學術研討會
指導教授 詹忠翰 馬國鳳(Chung-Han Chan Kuo-Fong Ma) 審核日期 2024-6-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明