參考文獻 |
[1] Weiss, T., & Ebert, W. (2017). Atomic Layer Deposition for Coating of Complex 3D Optics. Optik & Photonik, 12(3), 42–45.
[2] Metaform之AR/VR自由曲面
https://news.nweon.com/85465
[3] Astrauskytè, D., Galvanauskas, K., Gailevičius, D., Drazdys, M., Malinauskas, M., & Grineviciute, L. (2023). Anti-Reflective Coatings Produced via Atomic Layer Deposition for Hybrid Polymer 3D Micro-Optics. Nanomaterials, 13(16), 2281.
[4]李正中. (2020). 薄膜光學與鍍膜技術 (9th ed.). 藝軒圖書.
[5] Sun, L., Yuan, G., Gao, L., Yang, J., Chhowalla, M., Gharahcheshmeh, M. H., ... & Liu, Z. (2021). Chemical vapour deposition. Nature Reviews Methods Primers, 1(1), 5.
[6] Jain, N. K., Sawant, M. S., Nikam, S. H., & Jhavar, S. (2016). Metal Deposition: Plasma-Based Processes. (2016). Encyclopedia of Plasma Technology, 722-740.
[7] Wei, D., Lu, Y., Han, C., Niu, T., Chen, W., & Wee, A. T. S. (2013). Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. Angewandte Chemie, 125(52), 14371–14376.
[8] Wei, D., Peng, L., Li, M., Mao, H., Niu, T., Han, C., … Wee, A. T. S. (2015). Low Temperature Critical Growth of High Quality Nitrogen Doped Graphene on Dielectrics by Plasma-Enhanced Chemical Vapor Deposition. ACS Nano, 9(1), 164–171.
[9]越薄越好,3D薄膜製程大挑戰:淺談原子層沈積技術
https://reurl.cc/9G2a8v
[10] Kei, C. C., Cho W. H., Lin, C. P., Liu, B. H., & Chen, H. C. (2003). Industrial Applications and Development Prospect of Atomic Layer Deposition. 科儀新知, 35(2), 71-80.
[11] Pakkala, A., & Putkonen, M. (2010). Atomic Layer Deposition. Handbook of Deposition Technologies for Films and Coatings, 364–391.
[12] Schindler, P., Logar, M., Provine, J., & Prinz, F. B. (2015). Enhanced Step Coverage of TiO2 Deposited on High Aspect Ratio Surfaces by Plasma-Enhanced Atomic Layer Deposition. Langmuir, 31(18), 5057–5062.
[13] Heil, S. B. S., van Hemmen, J. L., Hodson, C. J., Singh, N., Klootwijk, J. H., Roozeboom, F., … & Kessels, W. M. M. (2007). Deposition of TiN and HfO2 in a commercial 200 mm remote plasma atomic layer deposition reactor. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25(5), 1357.
[14] Knoops, H. C. N., Faraz, T., Arts, K., Kessels, W. M. M. (2019). Status and prospects of plasma-assisted atomic layer deposition. Journal of Vacuum Science & Technology A, 37(3), 030902.
[15] Shangguan, L, Wang, Z., Chen, Z., Fan, S., Li, C., Zhang, J., … & Duan, Y. (2023). Modulating residual stress based on atomic layer deposition to enhance the adhesion of parylene C for encapsulation of flexible organic light-emitting diodes. Applied Physics Express, 16, 041004.
[16] Stoney, G. G. (1909). The tension of metallic films deposited by electrolysis. Proceedings of The Royal Society A:Mathematical, Physical and Engineering Sciences, 82(553), 172-175.
[17] Ghazaryan, L., Handa, S., Schmitt, P., Beladiya, V., Roddatis, V., Tünnermann, A., & Szeghalmi, A. (2020). Structural, optical, and mechanical properties of TiO2 nanolaminates. Nanotechnology, 32(9), 095709.
[18] Shestaeva, S., Bingel, A., Munzert, P., Ghazaryan, L., Patzig, C., Tünnermann, A., & Szeghalmi, A. (2017). Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications. Applied optics, 56(4), C47-C59.
[19] Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G. B., Barthel, E., ... & Martinu, L. (2018). Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science & Technology A, 36(2), 020801.
[20] Shugurov, A. R., & Panin, A. V. (2020). Mechanisms of stress generation in thin films and coatings. Technical Physics, 65(12), 1881-1904.
[21] Denus-Baillargeon, M. M. E., Schmitt, T., Larouche, S., & Martinu, L. (2014). Design and fabrication of stress-compensated optical coatings: Fabry–Perot filters for astronomical applications. Applied optics, 53(12), 2616-2624.
[22] Pfeiffer, K., Shestaeva, S., Bingel, A., Munzert, L., Ghazaryan, L., Helvoirt, C. V., … & Szeghalmi, A. (2016). Comparative study of ALD SiO2 thin films for optical applications. Optical Materials Express, 6(2), 660-670.
[23] UH4150光譜儀
https://reurl.cc/aqR8RQ
[24]橢圓偏振儀
https://reurl.cc/6v9YzM
[25] Yu-Sung Hsieh, Yu-Jen Lu, Yi-San Chang. (2012). 快速橢偏單層膜計算模 組開發. 科儀新知, 33(6), 40–48.
[26]X光繞射儀
https://reurl.cc/nNyAzX
[27] Xie, Q., Musschoot, J., Deduytsche, D., Van Meirhaeghe, R. L., 96 Detavernier, C., Van den Berghe, S., ... & Qu, X. P. (2008). Growth kinetics and crystallization behavior of TiO2 films prepared by plasma enhanced atomic layer deposition. Journal of The Electrochemical Society, 155(9), H688.
[28] Nasim, M., Li, Y., Wen, M., & Wen, C. (2020). A review of high-strength
nanolaminates and evaluation of their properties. Journal of Materials Science & Technology. 50, 215-244.
[29] Zhou, X., & Chen, C. (2016). Strengthening and toughening mechanisms of amorphous/amorphous nanolaminates. International Journal of Plasticity, 80, 75-85.
[30] Testoni, G. E., Chiappim, W., Pessoa, R. S., Fraga, M. A., Miyakawa, W., Sakane, K. K., ... & Maciel, H. S. (2016). Influence of the Al2O3 partial monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties. Journal of Physics D: Applied Physics, 49(37), 375301.
[31] Atanassov, G., Turlo, J., Fu, J. K., Dai, Y. S. (1999). Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition. Thin Solid Films, 342(1-2), 83-92
[32]B270熱膨脹係數
https://reurl.cc/EjDRkn
[33] SHI Yun-yun,XU Jun-qi,SU Jun-hong. (2020). Study on Properties of Fluorine-oxide Composite Films[J]. Acta Photonica Sinica, 49(8), 0831002.
[34] 何宜祐. (2020). 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究. 國立中央大學, 光電科學與工程學系.
[35] Liu, H., Jensen, L., Ma, P., Ristau, D. (2019). Stress compensated anti-reflection coating for high power laser deposited with IBS SiO2 and ALD Al2O3. Applied Surface Science, 476, 521-527.
[36] Beladiya, V., Faraz, T., Schmitt, P., Munser, A.-S., Schröder, S., Riese, S., … & Szeghalmi, A. (2022). Plasma Enhanced Atomic Layer Deposition of HfO2 with Substrate Biasing: Thin Films for High-Reflective Mirrors. ACS Applied Materials & Interfaces, 14(12), 14677-14692.
[37]何家綸. (2023). 利用電漿輔助原子層沉積鍍製抗反射膜於塑膠基板之環境測試. 國立中央大學, 光電科學與工程學系.
[38]XPS儀器規格
https://reurl.cc/aq8n09
[39] Rao, D., Biswas, B., Acharya, S., Bhatia, V., Pillai, A. I. K., Garbrecht, M., & Saha, B. (2020). Effects of adatom mobility and Ehrlich–Schwoebel barrier on heteroepitaxial growth of scandium nitride (ScN) thin films. Applied Physics Letters, 117(21), 212101.
[40]中央大學貴儀中心XPS儀器圖片
https://reurl.cc/oR4YNj
[41] Tripp, M. K., Stampfer, C., Miller, D. C., Helbling, T., Herrmann, C. F., Hierold, C., … & Bright, V. M. (2006). The mechanical properties of atomic layer deposited alumina for use in micro- and nano-electromechanical systems. Sensors and Actuators A: Physical, 130-131, 419-429.
[42] Jeong, S. Y., Shim, H. R., Na, Y., Kang, K. S., Jeon, Y., Cho, S., … & Choi, K. C. (2021). Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles. npj Flexible Electronics, 5,15.
[43] Wei, Y., Xu, Q., Wang, Z., Liu, Z., Pan, F., Zhang, Q., & Wang, J. (2018). Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition. Journal of Alloys and Compounds, 735, 1422-1426.
[44] Zhu, L., Lu, Q., Lv, L., Wang, Y., Hu, Y., Deng, Z., … & Teng, F. (2017). Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Advances, 7(33), 20084-20092.
[45] Broggi, A., Tangstad, M., Ringdalen, E. (2019). Characterization of a Si-SiO2 Mixture Generated from SiO(g) and CO(g). Metall Mater Trans B, 50, 2667-2680. |