博碩士論文 111226063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:121 、訪客IP:18.116.62.132
姓名 柯冠宇(Kuan-Yu Ko)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 低溫電漿輔助原子層沉積法鍍製抗反射膜之低應力研究
(Investigation of Low Stress in Anti-Reflective Coatings Fabricated by Low-Temperature Plasma-Enhanced Atomic Layer Deposition)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-10以後開放)
摘要(中) 本論文使用電漿輔助原子層沉積法鍍製抗反射膜於玻璃基板,固定製程溫度於70°C,使用氧氣混合氬氣的氧化方式,探討不同厚度、不同電漿瓦數下TiO2、SiO2的光學特性與機械應力,並以無膜裂之最佳參數電漿功率150W鍍製抗反射膜。
經X光繞射儀測得TiO2單層膜與基板訊號一致、TEM橫截面與電子繞射環無任何晶粒與光斑產生,呈現非晶態。使用原子力顯微鏡分析薄膜表面,其平均粗糙度約為0.2±0.05nm。應力量測使用Fizeau 干涉儀,TiO2單層膜隨著循環次數增加穩定於約220±10MPa,而SiO2單層膜隨著循環次數增加穩定於約-35±15MPa。
最終結果顯示,四層抗反射膜在400nm~700nm可見光波段的反射光譜平均反射率達0.35%,應力值為48MPa,驗證了使用呈現張應力的TiO2與呈現壓應力的SiO2可達到抵消應力的效果。
摘要(英) In this work, a plasma assisted atomic layer deposition method was utilized
to deposit an anti-reflective coating on glass substrates at a fixed process
temperature of 70°C, using an oxygen/argon gas mixture for oxidation. Optical
properties and mechanical stress of different thicknesses TiO2 and SiO2 at various
plasma power levels were investigated. The anti-reflective coating was deposited
using the optimal plasma power of 150W, which did not result in film cracking.
XRD measurements showed that the TiO2 single-layer film signal was
consistent with the substrate signal, and TEM cross section along with an electron
diffraction ring confirmed amorphous state without grains or spots. AFM analysis
of the film surface revealed an average roughness of about 0.2±0.05nm. Stress
measurements using a Fizeau interferometer demonstrated that the TiO2 film
stabilized at about 220±10MPa with increasing cycles, while the SiO2 film
stabilized at about -35±15MPa.
The results indicated that the four-layer anti-reflective coating provided an
average reflectance of 0.35% over a visible light spectrum from 400nm to 700nm.
The stress value of 48MPa verified that using TiO2 with tensile stress and SiO2
with compressive stress can effectively cancel out stress.
關鍵字(中) ★ 原子層沉積法
★ 應力
★ 抗反射膜
關鍵字(英) ★ ALD
★ stress
★ AR coating
論文目次 中文摘要 i
ABSTRACT ii
致謝 iii
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 4
第二章 基礎理論與文獻回顧 5
2-1 原子層沉積工作原理 5
2-1-1 化學氣相沉積法 5
2-1-2 原子層沉積法 7
2-1-3 電漿輔助原子層沉積法(PEALD) 11
2-2 薄膜應力 14
2-2-1 薄膜應力成因 14
2-2-2 薄膜應力計算公式 16
2-3 文獻探討 19
第三章 實驗方法與儀器設備 29
3-1 實驗方法 29
3-1-1 實驗流程 29
3-1-2 實驗步驟 30
3-2 製程設備介紹 33
3-3 量測儀器介紹 36
3-3-1 Fizeau干涉儀 36
3-3-2 落地型UV-VIS-NIR分光光譜儀 39
3-3-3 橢圓偏振儀(Spectroscopic Ellipsometer) 40
3-3-4高解析掃描穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 41
3-3-5 原子力顯微鏡(Atomic Force Microscope, AFM) 42
3-3-6 X光繞射儀(X Ray Diffractometer, XRD) 43
3-3-7 X光光電子能譜儀(X-ray Photoelectron Spectrometer, XPS) 44
3-3-8 光學顯微鏡(Optical Microscope, OM) 45
第四章 實驗結果與討論 46
4-1 TiO2單層膜之光學特性與機械特性 46
4-1-1 TiO2之光學特性 46
4-1-2 TiO2之機械應力 52
4-2 SiO2單層膜之光學特性與機械特性 58
4-2-1 SiO2之光學特性 58
4-2-2 SiO2之機械應力 63
4-3 多層抗反射膜 67
第五章 結論 70
參考文獻 71
參考文獻 [1] Weiss, T., & Ebert, W. (2017). Atomic Layer Deposition for Coating of Complex 3D Optics. Optik & Photonik, 12(3), 42–45.
[2] Metaform之AR/VR自由曲面
https://news.nweon.com/85465
[3] Astrauskytè, D., Galvanauskas, K., Gailevičius, D., Drazdys, M., Malinauskas, M., & Grineviciute, L. (2023). Anti-Reflective Coatings Produced via Atomic Layer Deposition for Hybrid Polymer 3D Micro-Optics. Nanomaterials, 13(16), 2281.
[4]李正中. (2020). 薄膜光學與鍍膜技術 (9th ed.). 藝軒圖書.
[5] Sun, L., Yuan, G., Gao, L., Yang, J., Chhowalla, M., Gharahcheshmeh, M. H., ... & Liu, Z. (2021). Chemical vapour deposition. Nature Reviews Methods Primers, 1(1), 5.
[6] Jain, N. K., Sawant, M. S., Nikam, S. H., & Jhavar, S. (2016). Metal Deposition: Plasma-Based Processes. (2016). Encyclopedia of Plasma Technology, 722-740.
[7] Wei, D., Lu, Y., Han, C., Niu, T., Chen, W., & Wee, A. T. S. (2013). Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. Angewandte Chemie, 125(52), 14371–14376.
[8] Wei, D., Peng, L., Li, M., Mao, H., Niu, T., Han, C., … Wee, A. T. S. (2015). Low Temperature Critical Growth of High Quality Nitrogen Doped Graphene on Dielectrics by Plasma-Enhanced Chemical Vapor Deposition. ACS Nano, 9(1), 164–171.
[9]越薄越好,3D薄膜製程大挑戰:淺談原子層沈積技術
https://reurl.cc/9G2a8v
[10] Kei, C. C., Cho W. H., Lin, C. P., Liu, B. H., & Chen, H. C. (2003). Industrial Applications and Development Prospect of Atomic Layer Deposition. 科儀新知, 35(2), 71-80.
[11] Pakkala, A., & Putkonen, M. (2010). Atomic Layer Deposition. Handbook of Deposition Technologies for Films and Coatings, 364–391.
[12] Schindler, P., Logar, M., Provine, J., & Prinz, F. B. (2015). Enhanced Step Coverage of TiO2 Deposited on High Aspect Ratio Surfaces by Plasma-Enhanced Atomic Layer Deposition. Langmuir, 31(18), 5057–5062.
[13] Heil, S. B. S., van Hemmen, J. L., Hodson, C. J., Singh, N., Klootwijk, J. H., Roozeboom, F., … & Kessels, W. M. M. (2007). Deposition of TiN and HfO2 in a commercial 200 mm remote plasma atomic layer deposition reactor. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 25(5), 1357.
[14] Knoops, H. C. N., Faraz, T., Arts, K., Kessels, W. M. M. (2019). Status and prospects of plasma-assisted atomic layer deposition. Journal of Vacuum Science & Technology A, 37(3), 030902.
[15] Shangguan, L, Wang, Z., Chen, Z., Fan, S., Li, C., Zhang, J., … & Duan, Y. (2023). Modulating residual stress based on atomic layer deposition to enhance the adhesion of parylene C for encapsulation of flexible organic light-emitting diodes. Applied Physics Express, 16, 041004.
[16] Stoney, G. G. (1909). The tension of metallic films deposited by electrolysis. Proceedings of The Royal Society A:Mathematical, Physical and Engineering Sciences, 82(553), 172-175.
[17] Ghazaryan, L., Handa, S., Schmitt, P., Beladiya, V., Roddatis, V., Tünnermann, A., & Szeghalmi, A. (2020). Structural, optical, and mechanical properties of TiO2 nanolaminates. Nanotechnology, 32(9), 095709.
[18] Shestaeva, S., Bingel, A., Munzert, P., Ghazaryan, L., Patzig, C., Tünnermann, A., & Szeghalmi, A. (2017). Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications. Applied optics, 56(4), C47-C59.
[19] Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G. B., Barthel, E., ... & Martinu, L. (2018). Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science & Technology A, 36(2), 020801.
[20] Shugurov, A. R., & Panin, A. V. (2020). Mechanisms of stress generation in thin films and coatings. Technical Physics, 65(12), 1881-1904.
[21] Denus-Baillargeon, M. M. E., Schmitt, T., Larouche, S., & Martinu, L. (2014). Design and fabrication of stress-compensated optical coatings: Fabry–Perot filters for astronomical applications. Applied optics, 53(12), 2616-2624.
[22] Pfeiffer, K., Shestaeva, S., Bingel, A., Munzert, L., Ghazaryan, L., Helvoirt, C. V., … & Szeghalmi, A. (2016). Comparative study of ALD SiO2 thin films for optical applications. Optical Materials Express, 6(2), 660-670.
[23] UH4150光譜儀
https://reurl.cc/aqR8RQ
[24]橢圓偏振儀
https://reurl.cc/6v9YzM
[25] Yu-Sung Hsieh, Yu-Jen Lu, Yi-San Chang. (2012). 快速橢偏單層膜計算模 組開發. 科儀新知, 33(6), 40–48.
[26]X光繞射儀
https://reurl.cc/nNyAzX
[27] Xie, Q., Musschoot, J., Deduytsche, D., Van Meirhaeghe, R. L., 96 Detavernier, C., Van den Berghe, S., ... & Qu, X. P. (2008). Growth kinetics and crystallization behavior of TiO2 films prepared by plasma enhanced atomic layer deposition. Journal of The Electrochemical Society, 155(9), H688.
[28] Nasim, M., Li, Y., Wen, M., & Wen, C. (2020). A review of high-strength
nanolaminates and evaluation of their properties. Journal of Materials Science & Technology. 50, 215-244.
[29] Zhou, X., & Chen, C. (2016). Strengthening and toughening mechanisms of amorphous/amorphous nanolaminates. International Journal of Plasticity, 80, 75-85.
[30] Testoni, G. E., Chiappim, W., Pessoa, R. S., Fraga, M. A., Miyakawa, W., Sakane, K. K., ... & Maciel, H. S. (2016). Influence of the Al2O3 partial monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties. Journal of Physics D: Applied Physics, 49(37), 375301.
[31] Atanassov, G., Turlo, J., Fu, J. K., Dai, Y. S. (1999). Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition. Thin Solid Films, 342(1-2), 83-92
[32]B270熱膨脹係數
https://reurl.cc/EjDRkn
[33] SHI Yun-yun,XU Jun-qi,SU Jun-hong. (2020). Study on Properties of Fluorine-oxide Composite Films[J]. Acta Photonica Sinica, 49(8), 0831002.
[34] 何宜祐. (2020). 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究. 國立中央大學, 光電科學與工程學系.
[35] Liu, H., Jensen, L., Ma, P., Ristau, D. (2019). Stress compensated anti-reflection coating for high power laser deposited with IBS SiO2 and ALD Al2O3. Applied Surface Science, 476, 521-527.
[36] Beladiya, V., Faraz, T., Schmitt, P., Munser, A.-S., Schröder, S., Riese, S., … & Szeghalmi, A. (2022). Plasma Enhanced Atomic Layer Deposition of HfO2 with Substrate Biasing: Thin Films for High-Reflective Mirrors. ACS Applied Materials & Interfaces, 14(12), 14677-14692.
[37]何家綸. (2023). 利用電漿輔助原子層沉積鍍製抗反射膜於塑膠基板之環境測試. 國立中央大學, 光電科學與工程學系.
[38]XPS儀器規格
https://reurl.cc/aq8n09
[39] Rao, D., Biswas, B., Acharya, S., Bhatia, V., Pillai, A. I. K., Garbrecht, M., & Saha, B. (2020). Effects of adatom mobility and Ehrlich–Schwoebel barrier on heteroepitaxial growth of scandium nitride (ScN) thin films. Applied Physics Letters, 117(21), 212101.
[40]中央大學貴儀中心XPS儀器圖片
https://reurl.cc/oR4YNj
[41] Tripp, M. K., Stampfer, C., Miller, D. C., Helbling, T., Herrmann, C. F., Hierold, C., … & Bright, V. M. (2006). The mechanical properties of atomic layer deposited alumina for use in micro- and nano-electromechanical systems. Sensors and Actuators A: Physical, 130-131, 419-429.
[42] Jeong, S. Y., Shim, H. R., Na, Y., Kang, K. S., Jeon, Y., Cho, S., … & Choi, K. C. (2021). Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles. npj Flexible Electronics, 5,15.
[43] Wei, Y., Xu, Q., Wang, Z., Liu, Z., Pan, F., Zhang, Q., & Wang, J. (2018). Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition. Journal of Alloys and Compounds, 735, 1422-1426.
[44] Zhu, L., Lu, Q., Lv, L., Wang, Y., Hu, Y., Deng, Z., … & Teng, F. (2017). Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Advances, 7(33), 20084-20092.
[45] Broggi, A., Tangstad, M., Ringdalen, E. (2019). Characterization of a Si-SiO2 Mixture Generated from SiO(g) and CO(g). Metall Mater Trans B, 50, 2667-2680.
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2024-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明