博碩士論文 111226052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:147 、訪客IP:3.144.224.74
姓名 紀孟甫(Meng-Fu Chi)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用離子助鍍電子槍蒸鍍法鍍製抗四氟化碳電漿之抗腐蝕薄膜與鈍化層生成之研究
(Investigation on the Fabrication of Corrosion-Resistant Coatings and Passivation Layers Against CF₄ Plasma Using Ion-Assisted Electron Beam Evaporation)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-10以後開放)
摘要(中) 本研究採用離子助鍍電子槍蒸鍍系統來鍍製氧化釔(Y2O3)、釔鋁石榴石(YAG)及釔鋁石榴石(YAG)摻雜稀土元素材料,調整不同離子源電壓參數鍍製抗腐蝕薄膜,透過微波電漿蝕刻(CF4/O2/Ar)後找出其最佳抗電漿腐蝕薄膜以及其參數。
經過微波電漿蝕刻機固定微波功率及氣體比例蝕刻兩個小時後,從XPS分析可知氧化釔(Y2O3)、釔鋁石榴石(YAG)及釔鋁石榴石(YAG)摻雜稀土元素材料在不同離子源電壓時有不同的Y-F濃度,當有較高的Y-F濃度時有較好的擴散速率。在經過長時間的蝕刻又以YAG 摻雜稀土元素最為抗電漿腐蝕。
從FIB圖可以發現蝕刻兩個小時後氧化釔(Y2O3)、釔鋁石榴石(YAG)及釔鋁石榴石(YAG)摻雜稀土元素材料時有較慢的生長速率,分別為0.00713 Å/s、0.0667 Å/s及0.0045 Å/s,經過長時間蝕刻後也是YAG 摻雜稀土元素之生長速率趨於穩定。經過OM的觀察也可以發現YAG 摻雜稀土元素膜面經過長時間蝕刻後有較少微粒汙染。
YAG 摻雜擁有不錯的氟擴散速率表示其生成鈍化層的品質較佳,以及經過長時間蝕刻可以更快速的達到穩定減緩其生長速率,並且微粒汙染較少,因此YAG 摻雜之抗電漿腐蝕能力最為出色。
摘要(英) This study utilized an ion-assisted deposition electron gun evaporation system to fabricate yttrium oxide (Y2O3), yttrium aluminum garnet (YAG), and rare-earth-doped yttrium aluminum garnet (YAG) materials. Corrosion-resistant films were produced by adjusting various ion source voltage parameters. The optimal plasma corrosion-resistant film and its parameters were identified through microwave plasma etching (CF4/O2/Ar).
After etching for two hours with a fixed microwave power and gas ratio in the microwave plasma etcher, XPS analysis revealed different Y-F concentrations in yttrium oxide (Y2O3), yttrium aluminum garnet (YAG), and rare-earth-doped yttrium aluminum garnet (YAG) under different ion source voltages. Higher Y-F concentrations were associated with better diffusion rates. Among these, rare-earth-doped YAG exhibited the highest resistance to plasma corrosion after prolonged etching.
FIB images indicated that after two hours of etching, yttrium oxide (Y2O3), yttrium aluminum garnet (YAG), and rare-earth-doped yttrium aluminum garnet (YAG) showed slower growth rates of 0.00713 Å/s, 0.0667 Å/s, and 0.0045 Å/s, respectively. Prolonged etching also stabilized the growth rate of rare-earth-doped YAG. Observations from OM revealed that the surface of the rare-earth-doped YAG film had fewer particulate contaminants after extended etching.
The enhanced fluorine diffusion rate in doped YAG suggests the formation of a superior passivation layer. Prolonged etching leads to a more stable and reduced growth rate, coupled with fewer particulate contaminants. Consequently, rare earth element-doped YAG demonstrates exceptional plasma corrosion resistance.
關鍵字(中) ★ 氧化釔
★ 釔鋁石榴石
★ 抗腐蝕薄膜
關鍵字(英) ★ Y2O3
★ YAG
★ Anti-Plasma
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 基礎理論 4
2-1 抗腐蝕材料 4
2-1-1 Y2O3的特性與晶體結構 4
2-1-2 YAG的特性與晶體結構 6
2-1-3 文獻探討 7
2-2 離子助鍍電子槍蒸鍍系統 18
2-2-1 基本原理 18
2-2-2 真空鍍膜系統 19
2-3 微波電漿蝕刻系統 25
2-3-1 基本原理 25
2-3-2 電漿蝕刻設備 27
第三章 實驗方法與使用儀器 29
3-1 實驗方法 29
3-1-1 實驗流程 29
3-1-2 實驗步驟 31
3-2 量測儀器 33
3-2-1 UV-VIS-NIR 落地型分光光譜儀 33
3-2-2 X光繞射儀(X-Ray Diffraction, XRD) 34
3-2-3 原子力顯微鏡(Atomic Force Microscope, AFM) 36
3-2-4 雙束型聚焦離子束顯微鏡(Dual-Beam Focus-Ion-Beam System, FIB) 38
3-2-5 X光光電子能譜儀(X-ray Photoelectron Spectrometer, XPS) 39
第四章 實驗結果與討論 41
4-1 抗腐蝕薄膜分析 41
4-1-1光譜量測之計算薄膜折射率 41
4-1-2 XRD之繞射峰值分析 44
4-1-3 FIB與AFM表面形態分析 46
4-2 抗腐蝕薄膜蝕刻後分析 50
4-2-1 鈍化層結構分析 50
4-2-2 鈍化層生長速率分析 54
第五章 結論 61
參考文獻 63
參考文獻 [1] K. Nojiri Dry etching technology for semiconductors. Cham, Switzerland: Springer International Publishing; 2015.
[2] Y. C. Kim, C. I. Kim. Etching mechanism of Y2O3 thin films in high density Cl2/Ar plasma. J Vac Sci Technol, A. 19(5), 2676–9,2001.
[3] J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara, K. Uematsu. Plasma-resistant dense yttrium oxide film prepared by aerosol deposition process. J Am Ceram Soc., 90(8):2327–32, 2007.
[4] Kim D-M, Oh Y-S, Kim S, Kim H-T, Lim D-S, Lee S-M. The erosion behaviors of Y2O3 and YF3 coatings under fluorocarbon plasma. Thin Solid Films, 519(20):6698–702, 2011.
[5] S. Y. Mun, K. C. Shin, S. S. Lee, J. S. Kwak, J. Y. Jeong, and Y. H. Jeong, “Etch defect reduction using SF6/O2 plasma cleaning and optimizing etching recipe in photo resist masked gate poly silicon etch process” Jpn. J. Appl. Phys., 44, 4891~4895, 2005.
[6] K. Miwa, K. Usami, N. Takada, and K. Sasaki " modification of fluorinated Al2O3 surface by irradiating H2 and O2 plasmas,” Jpn. J. Appl. Phys., 48, 126002, 2009.
[7] N. Ito, T. Moriya, F. Uesugi, M. Matsumoto, S. Liu, and Y. itayama, “Reduction of particle contamination in plasma-etching equipment by dehydration of chamber wall,” Jpn. J. Appl. Phys., 47, 3630-3634, 2008.
[8] S. J. Kim, J. K. Lee, Y. S. Oh, S. W. Kim, and S. M. Lee, “Effect of processing parameters and powder size on microstructures and mechanical properties of Y2O3 coatings fabricated by suspension plasma spray,” J. Korean Ceram. Soc., 52, 395~402, 2015.
[9] G. Cunge, B. Pelissier, O. Joubert, R. Ramos, and C. Maurice, “New chamber walls conditioning and cleaning strategies to improve the stability of plasma processes,” Plasma Sources Sci. Technol., 14, 599~609, 2005.
[10] T. Chevolleau, M. Darnon, T. David, N. Posseme, J. Torres, and O. Joubert, “Analyses of chamber wall coatings during the patterning of ultralow- k materials with a metal hard mask: Consequences on cleaning strategies,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures., 25. 886~892, 2007.
[11] H. J. Lee, C. L. Hung, C. H. Leng, N. T Lian, L. W. Young,T. Yang, K. C. Chen, and C. Y. Lu, “Etch defect characterization and reduction in hard-mask-based Al interconnect etching,” Int. J. Plasma Sci. Eng., 20,. 1~5, 2008.
[12] Y.-N. Xu, Z.-q. Gu, and W. Ching, "Electronic, structural, and optical properties of crystalline yttria," Physical Review B, vol. 56, p. 14993, 1997.
[13] 釔鋁石榴石(YAG)粉體的製備與應用簡介
https://www.chemicalbook.com/NewsInfo_18086.htm
[14] T. Ma, T. List, V. M. Donnelly, “Y2O3 wall interactions in Cl2 etching and NF3 cleaning plasmas,” J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films 35, 031303, 2017.
[15] S. Y. Mun, K. C. Shin, S. S. Lee, J. S. Kwak, J. Y. Jeong, and Y. H. Jeong, “Etch defect reduction using SF6/O2 plasma cleaning and optimizing etching recipe in photo resist masked gate poly silicon etch process,” Jpn. J. Appl. Phys., vol. 44, pp. 4891~4894, 2005.
[16] N. R. Rueger, J. J. Beulens, M. Schaepkens, J. M. Mirza, T.E.F.M. Standaert, and G. S. Oehrlein, “Role of steady state fluorocarbon films in the etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor,” J. Vac. Sci. Technol., 15, 1881~1889, 1997.
[17] N. R. Rueger, J. J. Beulens, M. Schaepkens, M. F. Doemling, J. M. Mirza, T.E.F.M. Standaert, G. S. Oehrlein, “Role of steady state fluorocarbon films in the etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor,” J. Vac. Sci. Technol., 15, 1881-1889, 1997.
[18] D. M. Kim, Y. S. Oh, S. Kim, H. T. Kim, D. S. Lim, S. M. Lee, “The erosion behaviors of Y2O3 and YF3 coatings under fluorocarbon plasma,” Thin Solid Films, 519, 6698~6702, 2011.
[19] K. Miyashita1, T. Tsunoura, K. Yoshida, T. Yano,Y. Kishi, “Fluorine and oxygen plasma exposure behavior of yttrium oxyfluoride ceramics,” Japanese Journal of Applied Physics 58, SEEC01, 2019.
[20] M.j. Kim, E. Choi, D.j. Lee, J. Seo, T.-Sun. Back, J.h. So, J.-Y. Yun, S.-M. Suh, “The effect of powder particle size on the corrosion behavior of atmospheric plasma spray-Y2O3 coating: Unraveling the corrosion mechanism by fluorine-based plasma,” Applied Surface Science, 606, 154958, 2022.
[21] W.-K. Wang, S.-Y. Wang, Y.-H. Zhang, S.-Y. Huang, “Passivation effect on the surface characteristics and corrosion properties of yttrium oxide flms undergoing SF6 plasma treatment,” Ceramics International, 48, 19824–19830,2022.
[22] D. M. Kim, M. Ran, Y. S. Oh, S. Kim, S. M. Lee and S. H. Lee, “Relative sputtering rates of oxides and fluorides of aluminum and yttrium,” Surf. Coat. Tech. 309. 694~697, 2017.
[23] HITACHI UH-4150 操作說明書
www.hitachi-hightech.com
[24] 布拉格繞射示意圖.
https://reurl.cc/nDl4pl
[25] 原子力顯微鏡原理.
https://reurl.cc/aVRYOZ
[26] 雙束型聚焦離子束系統
https://vir.nstc.gov.tw/JobToDo/JobToDo
[27] X-ray photoelectron spectroscopy.
https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[28] 李正中, 薄膜光學與鍍膜技術.第九版. 2020: 藝軒圖書.
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2024-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明