博碩士論文 111226055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:148 、訪客IP:3.144.224.74
姓名 黃冠維(Guan-Wei Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 應用於MR波導系統中全視角65度投影鏡頭設計
相關論文
★ 白光LED於住宅照明之設計與應用★ 超廣角車用鏡頭設計
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 光學變焦之軌跡優化控制★ LED光源暨LED與太陽光混和照明於室內照明之模擬與分析
★ 利用光展量概念之微型投影機光學設計方法與實作★ 光學顯微鏡之鏡頭設計
★ 手機上隱藏式指紋辨識設計★ DLP微型投影系統之光路設計
★ 高效率藍光碟片讀取頭★ 模組化雙波長光學讀寫頭的設計與光學讀寫頭應用在角度量測的研究
★ 數位相機之鏡頭設計★ 單光電偵測器之複合式光學讀寫頭
★ 三百萬畫素二點七五倍光學變焦手機鏡頭設計★ 稜鏡玻璃選取對色差的影響與校正
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-12以後開放)
摘要(中) 本投影鏡頭設計由4片玻璃球面鏡片與3片塑膠非球面鏡片所組成,鏡頭焦距20.458 mm,對角線全視角65,水平方向全視角48.50,光圈位於鏡頭第一面上,入瞳大小為10 mm,F/#=2.046,設定角度解析度為45 PPD,則空間頻率為60 lp/mm。使用1.03吋、長寬比相同OLED面板,畫素數目為25602560,單一畫素大小為7.2 m7.2 m。由於本文推導出光在波導內追跡其所有賽德像差為零且與波導的材料與厚度無關,所以投影鏡頭可以單獨設計,不需要考慮波導的影響。面板發光面位於投影鏡頭物焦平面,投影鏡頭功能是把面板影像經由投影鏡頭準直投射至第一個全像元件,透過全像元件使光線在波導內進行全反射傳遞到下一個全像元件,最後經由眼睛觀看。而投影鏡頭在MR系統中可以被視為一個放大鏡,角放大率為12.22倍。當面板影像經過投影鏡頭後,其電視畸變與橫向色差會隨著影像一同被放大,我們利用直線鑑別率與橫向色差鑑別率來分析。本文投影鏡頭設計直線鑑別率與橫向色差鑑別率分別為0.407和0.675,都小於人眼辯別率1,因此人眼無法辨識其直線扭曲與橫向色差,而達到其設計要求。
摘要(英) This projection lens design consists of 4 glass spherical lenses and 3 plastic aspherical lenses. The focal length of the lens is 20.458 mm, with a diagonal field of view of 65 degrees and a horizontal field of view of 48.50 degrees. The aperture is located on the first lens surface with an entrance pupil diameter of 10 mm, resulting in an F-number of 2.046. The angular resolution is set at 45 PPD (Pixels Per Degree), corresponding to a spatial frequency of 60 lp/mm.
The lens is designed for use with a 1.03-inch OLED panel, which has a resolution of 2560 x 2560 pixels and a pixel size of 7.2 µm x 7.2 µm. In this study, it was derived that the lens design can be developed independently without considering the influence of the waveguide, as all Seidel aberrations of light within the waveguide are zero and independent of its material and thickness.
The emitting surface of the panel is located at the projection lens′s object focal plane. The function of the projection lens is to project the panel image through collimation onto the first holographic element. The light then undergoes total internal reflection through the waveguide, passing to the next holographic element, and finally reaching the eye for viewing. In the MR (Mixed Reality) system, the projection lens acts as a magnifier with a magnification factor of 12.22 times.
After passing through the projection lens, any television distortion and lateral chromatic aberration in the panel image are magnified accordingly. Linear discrimination rate and lateral chromatic aberration discrimination rate are used for analysis. The designed linear discrimination rate and lateral chromatic aberration discrimination rate of this projection lens are 0.412 and 0.675, respectively, both less than the human eye′s discrimination threshold of 1. Therefore, the human eye cannot perceive linear distortion or lateral chromatic aberration, meeting the design requirements.
關鍵字(中) ★ AR系統
★ MR系統
★ 投影鏡頭設計
★ 直線鑑別率
★ 橫向色差鑑別率
關鍵字(英) ★ AR System
★ MR System
★ Projection Lens Design
★ Line resolution
★ Lateral Color resolution
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 vi
圖目錄 x
表目錄 xv
1 第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-2-1 頭戴式顯示器的應用 2
1-2-2 頭戴式顯示器的設計 8
1-2-3 投影鏡頭設計 19
1-3 論文架構 22
2 第二章 投影鏡頭設計理論 24
2-1 AR、MR系統的VHOE架構 24
2-2 物方光線在波導中光線追跡對賽德像差的影響 25
2-2-1 鏡頭逆向設計 25
2-2-2 Tunnel Diagrams 25
2-2-3 入瞳位置平移 27
2-2-4 拉氏不變量與折射不變量 29
2-2-5 平板玻璃的光線追跡 31
2-2-6 平板玻璃的賽德像差 32
2-3 放大鏡原理 38
2-4 Optical Distortion 與 TV Distortion的關係 39
2-4-1 Optical Distortion 定義 39
2-4-2 TV Distortion定義 40
2-4-3 電視畸變視場範圍設定 40
2-4-4 水平電視畸變 42
2-4-5 水平電視畸變與水平直線扭曲量(1)關係 45
2-4-6 垂直電視畸變 47
2-4-7 垂直電視畸變與垂直直線扭曲量(2)關係 49
2-4-8 直線鑑別率 51
2-5 橫向色差 51
2-5-1 橫向色差鑑別率 52
2-6 投影鏡頭製造與組裝公差 53
2-6-1 公差定義 53
2-6-2 公差範圍制定 55
3 第三章 全視角65度投影鏡頭設計 57
3-1 鏡頭設計流程 57
3-2 投影面板規格 57
3-3 65度投影鏡頭初階規格 58
3-4 鏡頭設計目標 59
3-4-1 起始值與初階規格設定 60
3-5 鏡頭設計結果 65
3-5-1 MTF 67
3-5-2 Relative Illumination 68
3-5-3 Lateral color 69
3-5-4 Optical Distortion、TV Distortion 72
3-5-5 公差分析 73
4 第四章 矩形鏡頭 76
4-1 圓形鏡頭的體積和重量 76
4-2 方形鏡頭的體積和重量 78
5 第五章 結論 83
參考資料 84
參考文獻 [1] I. E. Sutherland, “A Head-mounted three dimensional display,” in Proceedings of the December 9-11, 1968, fall joint computer conference, part I, (ACM, 1968), 757.
[2] J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” in Proceedings of the China national computer conference, 2011.
[3] J. Wilson, D. Steingart, R. Romero, J. Reynolds, E. Mellers, A. Redfern, L. Lim, W. Watts, C. Patton, and J. Baker, “Design of Monocular Head-Mounted Displays for Increased Indoor Firefighting Safety and Efficiency,” in Defense and Security, (International Society for Optics and Photonics, 2005), 103.
[4] M. Fiorentino, R. de Amicis, G. Monno, and A. Stork, “Spacedesign: A mixed reality workspace for aesthetic industrial design,” In ISMAR’02: Proc. 1st Int’l Symp. on Mixed and Augmented Reality, Darmstadt, Germany, Sep. 30-Oct. 1 2002. IEEE CS Press. ISBN 0-7695-1781-1, pp. 86–318.
[5] M. Tönnis, C. Sandor, G. Klinker, C. Lange, and H. Bubb, “Experimental evaluation of an augmented reality visualization for directing a car driver’s attention,” In ISMAR’05: Proc. 4th Int’l Symp. on Mixed and Augmented Reality, Vienna, Austria, Oct. 5-8 2005. IEEE CS Press. ISBN 0-7695-2459-1, pp. 56–59.
[6] L. Vaissie, and J. Rolland. “Accuracy of rendered depth in head-mounted displays: Choice of eyepoint locations.” In Proc. AeroSense, vol. 4021, pp. 343–353, Bellingham, WA, USA, 2000. SPIE Press.
[7] J. He, W. Choi, J. S. McCarley, B. S. Chaparro, and C. Wang, “Texting while driving using Google GlassTM: promising but not distraction-free,” Accident Analysis & Prevention 81, 218-229 (2015).
[8] D. W. F. Van Krevelen, and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Inter0national Journal of Virtual Reality 9, 1-20 (2010).
[9] R. T. Azuma, H. Neely III, M. Daily, and J. Leonard. “Performance analysis of an outdoor augmented reality tracking system that relies upon a few mobile beacons.” In ISMAR’06: Proc. 5th Int’l Symp. on Mixed and Augmented Reality, Santa Barbara, CA, USA, Oct. 22-25 2006. IEEE CS Press. ISBN 1-4244-0650-1, pp. 101–104.
[10] H. Kaufmann, D. Schmalstieg, and M. Wagner, “Construct3D: A virtual reality application for mathematics and geometry education,” Education and Information Technologies, 5(4):263–276, Dec. 2000.
[11] F. Liarokapis, N. Mourkoussis, M. White, J. Darcy, M. Sifniotis, P. Petridis, A. Basu, and P. F. Lister, “Web3D and augmented reality to support engineering education. World Trans,” Engineering and Technology Education, 3(1):1–4, 2004.
[12] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Computer Graphics and Applications 21, 34-47 (2001).
[13] T. Wischgoll, “Display Systems for Visualization and Simulation in Virtual Environments,” Electronic Imaging, pp. 78-88, 2017. DOI: 10.2352/ISSN.2470-1173.2017.1.VDA-391.
[14] S. Park, S. Bokijonov, and Y. Choi, “Review of Microsoft HoloLens Applications over the Past Five Years,” Appl. Sci., vol. 11, p. 7259, 2021. DOI: 10.3390/app11167259.
[15] H. Fuchs, M. A. Livingston, R. Raskar, D. Colucci, K. Keller, A. State, J. R. Crawford, P. Rademacher, S. H. Drake, and A. A. Meyer, “Augmented reality visualization for laparoscopic surgery,” In W. M. Wells, A. Colchester, and S. Delp, editors, MICCAI’98: Proc. 1st Int’l Conf. Medical Image Computing and Computer-Assisted Intervention, vol. 1496 of LNCS, pp. 934–943, Cambridge, MA, USA, Oct. 11-13 1998. Springer-Verlag. ISBN 3-540-65136-5.
[16] M. Merten, “Erweiterte Realität-verschmelzung zweier Welten,” Deutsches Ärzteblatt, 104(13):A–840–842, Mar. 2007.
[17] C. Bichlmeier, F. Wimmer, S. M. Heining, and N. Navab, “Contextual anatomic mimesis hybrid in-situ visualization method for improving multi-sensory depth perception in medical augmented reality.” Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality,” Nara, Japan: IEEE, 2007, 129-138.
[18] Q. W. Wang, D. W. Cheng, Q. C. Hou, Y. Hu, and Y. T. Wang, “Stray light and tolerance analysis of an ultrathin waveguide display,” Applied Optics 54, 8354-8362 (2015).
[19] J. M. Yang, P. Twardowski, P. Gerard, and J. Fontaine, “Design of a large field-of-view see-through near to eye display with two geometrical waveguides,” Optics Letters 41, 5426-5429 (2016).
[20] H. C. Hung, and J. W. Pan, “Optical design of a compact see-through headmounted display with light guide plate,” SID Symposium Digest of Technical Papers 45, 293-296 (2014).
[21] K.W. Zhao, and J.W. Pan, “Optical design for a see-through head-mounted display with high visibility,” Opt. Express, vol. 24, pp. 4749-4760, 2016.
[22] D. W. Cheng, Y. T. Wang, C. Xu, W. T. Song, and G. F. Jin, “Design of an ultra-thin near-eye display with
geometrical waveguide and freeform optics,” Optics Express 22,
20705-20719 (2014).
[23] A. Ivaniuk, and A. Kalinina, “Augmented reality (AR) display design based on freeform optics,” in OSA Optical Design and Fabrication 2021 (Flat Optics, Freeform, IODC, OFT), F. Capasso, W. Chen, P. Dainese, J. Fan, J. DeGroote Nelson, F. Duerr, J. Rogers, J. Rolland, P. Clark, R. Pfisterer, H. Rehn, S. Thibault, M. Jenkins, D. Wook Kim, and N. Trela-McDonald, eds., OSA Technical Digest (Optica Publishing Group, 2021), paper RW1A.7.
[24] T. Levola, “Diffractive optics for virtual reality displays,” Journal of the Society for Information Display 14, 467-475 (2006).
[25] B. C. Kress, “Optical waveguide combiners for AR headsets: features and limitations,” Proceedings SPIE 11062, Digital Optical Technologies 2019. Munich, Germany: SPIE, 2019, 110620J.
[26] J. S. Xiao, J. Liu, J. Han, and Y. T. Wang, “Design of achromatic surface microstructure for neareye
display with diffractive waveguide,” Optics Communications 452,
411-416 (2019).
[27] Z. Y. Liu, C. Pan, Y. J. Pang, and Z. H. Huang, “A full-color near-eye augmented reality display using a
tilted waveguide and diffraction gratings,” Optics Communications
431, 45-50 (2019).
[28] P. Saarikko, “Diffractive exit-pupil expander with a large field of view,”
Proceedings SPIE 7001, Photonics in Multimedia II. Strasbourg,
France: SPIE, 2008, 700105.
[29] J. A. Piao, G. Li, M. L. Piao, and N. Kim, “Full Color Holographic Optical Element Fabrication for Waveguide type Head Mounted Display Using Photopolymer,” Opt. Soc. Korea. 17:242–248 (2013).
[30] M. L. Piao, and N. Kim, “Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer,” Appl. Opt., vol. 53, pp. 2180-2186, 2014.
[31] I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A forgettable near eye display,” In:International symposium on wearable computers; 2000.
[32] K. Mirza, and K. Sarayeddine, “Key challenges to affordable see through
wearable displays: the missing link for mobile AR mass deployment,” In: Internal technical paper-OPTINVENT SA; 2012.
[33] A. Cameron, “The application of holographic optical waveguide technology to the Q-Sight family of helmet-mounted displays,” Proceedings of SPIE 7326, Head- and Helmet-Mounted Displays XIV: Design and Applications. Orlando, Florida, United States: SPIE, 2009, 73260H.
[34] Y. S. Weng, Y. N. Zhang, J. G. Cui, A. Liu, Z. W. Shen, X. H. Li, and B. P. Wang, “Liquid-crystal-based polarization volume grating applied for full-color waveguide displays.” Optics Letters 43, 5773 5776 (2018).
[35] Y. S. Weng, D. M. Xu, Y. N. Zhang, X. H. Li, and S. T. Wu, “Polarization volume grating with high efficiency and large diffraction angle.” Optics Express 24, 17746-17759 (2016).
[36] Lumus, Geometrical Waveguide Type Glasses.
At https://lumusvision.com/how-it-works/.
[37] Epson, Geometrical Waveguide Type Glasses.
At https://phys.org/news/2016-02-world-lightest-oled-binocular-see-through.html.
[38] Optinvent, Geometrical Waveguide Type Glasses.
At http://www.optinvent.com/our_products/ora-2/.
[39] Microsoft, SRG. At https://www.microsoft.com/zh-tw/hololens.
[40] Magic Leap, SRG. At https://www.magicleap.com/magic-leap-2.
[41] H. Hua, Y. Ha, and J. P. Rolland, “Design of an ultralight and compact projection lens,” Appl. Opt. 42, pp. 97-107 (2003).
[42] H. Hua and C. Gao, “Design of a bright polarized head-mounted projection display,” Appl. Opt. 46, pp. 2600-2610 (2007).
[43] R. Zhang and H. Hua, “Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays,” Appl. Opt. 47, pp. 2888-2896 (2008).
[44] 余俊毅,「MR系統全視角30度投影鏡頭設計與製造和全視角50度投影鏡頭設計暨深度攝影機光學品質檢測」,中央大學,碩士論文,民國112年。
[45] MIL-HDBK-141,Optical Design(Defense Supply Agency, Washington, 1987), pp. 13–38.
[46] W. J. Smith, “Modern Optical Engineering,” (McGraw-Hill, 2nd ed., 1990), chap. 4.
[47] W. T. Welford, Aberrations of the symmetrical optical system, (Academic, 1974) chap. 7.
[48]W. S. Sun, C. M. Huang and J. S. Lin, “Discussion of temperature, TV distortion, and lateral color of a 4-meagpixel DLP project lens,” OSA continuum V2, pp.3188-3203(2019).
[49] Synopsys Inc., “Tolerancing,” Code V Reference Manuals, Version 2022.03
指導教授 孫文信(Wen-Shing Sun) 審核日期 2024-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明