參考文獻 |
[1] I. E. Sutherland, “A Head-mounted three dimensional display,” in Proceedings of the December 9-11, 1968, fall joint computer conference, part I, (ACM, 1968), 757.
[2] J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” in Proceedings of the China national computer conference, 2011.
[3] J. Wilson, D. Steingart, R. Romero, J. Reynolds, E. Mellers, A. Redfern, L. Lim, W. Watts, C. Patton, and J. Baker, “Design of Monocular Head-Mounted Displays for Increased Indoor Firefighting Safety and Efficiency,” in Defense and Security, (International Society for Optics and Photonics, 2005), 103.
[4] M. Fiorentino, R. de Amicis, G. Monno, and A. Stork, “Spacedesign: A mixed reality workspace for aesthetic industrial design,” In ISMAR’02: Proc. 1st Int’l Symp. on Mixed and Augmented Reality, Darmstadt, Germany, Sep. 30-Oct. 1 2002. IEEE CS Press. ISBN 0-7695-1781-1, pp. 86–318.
[5] M. Tönnis, C. Sandor, G. Klinker, C. Lange, and H. Bubb, “Experimental evaluation of an augmented reality visualization for directing a car driver’s attention,” In ISMAR’05: Proc. 4th Int’l Symp. on Mixed and Augmented Reality, Vienna, Austria, Oct. 5-8 2005. IEEE CS Press. ISBN 0-7695-2459-1, pp. 56–59.
[6] L. Vaissie, and J. Rolland. “Accuracy of rendered depth in head-mounted displays: Choice of eyepoint locations.” In Proc. AeroSense, vol. 4021, pp. 343–353, Bellingham, WA, USA, 2000. SPIE Press.
[7] J. He, W. Choi, J. S. McCarley, B. S. Chaparro, and C. Wang, “Texting while driving using Google GlassTM: promising but not distraction-free,” Accident Analysis & Prevention 81, 218-229 (2015).
[8] D. W. F. Van Krevelen, and R. Poelman, “A survey of augmented reality technologies, applications and limitations,” Inter0national Journal of Virtual Reality 9, 1-20 (2010).
[9] R. T. Azuma, H. Neely III, M. Daily, and J. Leonard. “Performance analysis of an outdoor augmented reality tracking system that relies upon a few mobile beacons.” In ISMAR’06: Proc. 5th Int’l Symp. on Mixed and Augmented Reality, Santa Barbara, CA, USA, Oct. 22-25 2006. IEEE CS Press. ISBN 1-4244-0650-1, pp. 101–104.
[10] H. Kaufmann, D. Schmalstieg, and M. Wagner, “Construct3D: A virtual reality application for mathematics and geometry education,” Education and Information Technologies, 5(4):263–276, Dec. 2000.
[11] F. Liarokapis, N. Mourkoussis, M. White, J. Darcy, M. Sifniotis, P. Petridis, A. Basu, and P. F. Lister, “Web3D and augmented reality to support engineering education. World Trans,” Engineering and Technology Education, 3(1):1–4, 2004.
[12] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Computer Graphics and Applications 21, 34-47 (2001).
[13] T. Wischgoll, “Display Systems for Visualization and Simulation in Virtual Environments,” Electronic Imaging, pp. 78-88, 2017. DOI: 10.2352/ISSN.2470-1173.2017.1.VDA-391.
[14] S. Park, S. Bokijonov, and Y. Choi, “Review of Microsoft HoloLens Applications over the Past Five Years,” Appl. Sci., vol. 11, p. 7259, 2021. DOI: 10.3390/app11167259.
[15] H. Fuchs, M. A. Livingston, R. Raskar, D. Colucci, K. Keller, A. State, J. R. Crawford, P. Rademacher, S. H. Drake, and A. A. Meyer, “Augmented reality visualization for laparoscopic surgery,” In W. M. Wells, A. Colchester, and S. Delp, editors, MICCAI’98: Proc. 1st Int’l Conf. Medical Image Computing and Computer-Assisted Intervention, vol. 1496 of LNCS, pp. 934–943, Cambridge, MA, USA, Oct. 11-13 1998. Springer-Verlag. ISBN 3-540-65136-5.
[16] M. Merten, “Erweiterte Realität-verschmelzung zweier Welten,” Deutsches Ärzteblatt, 104(13):A–840–842, Mar. 2007.
[17] C. Bichlmeier, F. Wimmer, S. M. Heining, and N. Navab, “Contextual anatomic mimesis hybrid in-situ visualization method for improving multi-sensory depth perception in medical augmented reality.” Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality,” Nara, Japan: IEEE, 2007, 129-138.
[18] Q. W. Wang, D. W. Cheng, Q. C. Hou, Y. Hu, and Y. T. Wang, “Stray light and tolerance analysis of an ultrathin waveguide display,” Applied Optics 54, 8354-8362 (2015).
[19] J. M. Yang, P. Twardowski, P. Gerard, and J. Fontaine, “Design of a large field-of-view see-through near to eye display with two geometrical waveguides,” Optics Letters 41, 5426-5429 (2016).
[20] H. C. Hung, and J. W. Pan, “Optical design of a compact see-through headmounted display with light guide plate,” SID Symposium Digest of Technical Papers 45, 293-296 (2014).
[21] K.W. Zhao, and J.W. Pan, “Optical design for a see-through head-mounted display with high visibility,” Opt. Express, vol. 24, pp. 4749-4760, 2016.
[22] D. W. Cheng, Y. T. Wang, C. Xu, W. T. Song, and G. F. Jin, “Design of an ultra-thin near-eye display with
geometrical waveguide and freeform optics,” Optics Express 22,
20705-20719 (2014).
[23] A. Ivaniuk, and A. Kalinina, “Augmented reality (AR) display design based on freeform optics,” in OSA Optical Design and Fabrication 2021 (Flat Optics, Freeform, IODC, OFT), F. Capasso, W. Chen, P. Dainese, J. Fan, J. DeGroote Nelson, F. Duerr, J. Rogers, J. Rolland, P. Clark, R. Pfisterer, H. Rehn, S. Thibault, M. Jenkins, D. Wook Kim, and N. Trela-McDonald, eds., OSA Technical Digest (Optica Publishing Group, 2021), paper RW1A.7.
[24] T. Levola, “Diffractive optics for virtual reality displays,” Journal of the Society for Information Display 14, 467-475 (2006).
[25] B. C. Kress, “Optical waveguide combiners for AR headsets: features and limitations,” Proceedings SPIE 11062, Digital Optical Technologies 2019. Munich, Germany: SPIE, 2019, 110620J.
[26] J. S. Xiao, J. Liu, J. Han, and Y. T. Wang, “Design of achromatic surface microstructure for neareye
display with diffractive waveguide,” Optics Communications 452,
411-416 (2019).
[27] Z. Y. Liu, C. Pan, Y. J. Pang, and Z. H. Huang, “A full-color near-eye augmented reality display using a
tilted waveguide and diffraction gratings,” Optics Communications
431, 45-50 (2019).
[28] P. Saarikko, “Diffractive exit-pupil expander with a large field of view,”
Proceedings SPIE 7001, Photonics in Multimedia II. Strasbourg,
France: SPIE, 2008, 700105.
[29] J. A. Piao, G. Li, M. L. Piao, and N. Kim, “Full Color Holographic Optical Element Fabrication for Waveguide type Head Mounted Display Using Photopolymer,” Opt. Soc. Korea. 17:242–248 (2013).
[30] M. L. Piao, and N. Kim, “Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer,” Appl. Opt., vol. 53, pp. 2180-2186, 2014.
[31] I. Kasai, Y. Tanijiri, T. Endo, and H. Ueda, “A forgettable near eye display,” In:International symposium on wearable computers; 2000.
[32] K. Mirza, and K. Sarayeddine, “Key challenges to affordable see through
wearable displays: the missing link for mobile AR mass deployment,” In: Internal technical paper-OPTINVENT SA; 2012.
[33] A. Cameron, “The application of holographic optical waveguide technology to the Q-Sight family of helmet-mounted displays,” Proceedings of SPIE 7326, Head- and Helmet-Mounted Displays XIV: Design and Applications. Orlando, Florida, United States: SPIE, 2009, 73260H.
[34] Y. S. Weng, Y. N. Zhang, J. G. Cui, A. Liu, Z. W. Shen, X. H. Li, and B. P. Wang, “Liquid-crystal-based polarization volume grating applied for full-color waveguide displays.” Optics Letters 43, 5773 5776 (2018).
[35] Y. S. Weng, D. M. Xu, Y. N. Zhang, X. H. Li, and S. T. Wu, “Polarization volume grating with high efficiency and large diffraction angle.” Optics Express 24, 17746-17759 (2016).
[36] Lumus, Geometrical Waveguide Type Glasses.
At https://lumusvision.com/how-it-works/.
[37] Epson, Geometrical Waveguide Type Glasses.
At https://phys.org/news/2016-02-world-lightest-oled-binocular-see-through.html.
[38] Optinvent, Geometrical Waveguide Type Glasses.
At http://www.optinvent.com/our_products/ora-2/.
[39] Microsoft, SRG. At https://www.microsoft.com/zh-tw/hololens.
[40] Magic Leap, SRG. At https://www.magicleap.com/magic-leap-2.
[41] H. Hua, Y. Ha, and J. P. Rolland, “Design of an ultralight and compact projection lens,” Appl. Opt. 42, pp. 97-107 (2003).
[42] H. Hua and C. Gao, “Design of a bright polarized head-mounted projection display,” Appl. Opt. 46, pp. 2600-2610 (2007).
[43] R. Zhang and H. Hua, “Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays,” Appl. Opt. 47, pp. 2888-2896 (2008).
[44] 余俊毅,「MR系統全視角30度投影鏡頭設計與製造和全視角50度投影鏡頭設計暨深度攝影機光學品質檢測」,中央大學,碩士論文,民國112年。
[45] MIL-HDBK-141,Optical Design(Defense Supply Agency, Washington, 1987), pp. 13–38.
[46] W. J. Smith, “Modern Optical Engineering,” (McGraw-Hill, 2nd ed., 1990), chap. 4.
[47] W. T. Welford, Aberrations of the symmetrical optical system, (Academic, 1974) chap. 7.
[48]W. S. Sun, C. M. Huang and J. S. Lin, “Discussion of temperature, TV distortion, and lateral color of a 4-meagpixel DLP project lens,” OSA continuum V2, pp.3188-3203(2019).
[49] Synopsys Inc., “Tolerancing,” Code V Reference Manuals, Version 2022.03 |