博碩士論文 112226601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:135 、訪客IP:3.133.118.13
姓名 阮英俊(Nguyen Anh Tuan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以氮化物量子井製備的表面增益拉曼光譜檢測核鹼基
(DETECTION OF NUCLEOBASES BY SURFACE-ENHANCED RAMAN SPECTROSCOPY USING NITRIDE QUANTUM WELLS)
相關論文
★ 氮化物表面電漿生醫感測器之穩定化★ 以氮化銦鎵檢測循環腫瘤DNA
★ 氮化物表面增益拉曼光譜於 肝纖維化判定的應用★ CANCER DIAGNOSIS WITH HUMAN BLOOD PLASMA USING NITRIDE SURFACE-ENHANCED RAMAN SPECTROSCOPY
★ 以氮化銦鎵量子井研製表面增益拉曼光譜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 表面增強拉曼光譜(surface-enhanced Raman spectroscopy, SERS)是一種功能強大的分析技術,能夠藉由分子震動產稱的獨特光譜,辨識出待測物的結構。因此,拉曼光譜可以被視為分子的指紋。DNA定序是藉由四種鹼基(腺嘌呤、胞嘧啶、鳥嘌呤和胸腺嘧啶)產生的訊號差異,判定鹼基排列順序的技術。由於SERS具備極高的辨識度,有潛力應用於DNA定序。在本研究中,我們利用InGaN 量子井研製SERS基板,希望以此紀錄DNA鹼基產生的訊號差異。InGaN量子井可藉由局部表面電漿共振(localized surface plasmon resonance)及電荷轉移(charge transfer)增強SERS訊號,產生每種鹼基專屬的光譜。除此之外,InGaN量子井還能形成高密度的 “熱點”,讓SERS影像展現大範圍的亮點。利用這些影像,我們記錄到每種鹼基的特徵峰,包含: 腺嘌呤的1000 cm-1,胞嘧啶的1241 cm-1,胸腺嘧啶的1668 cm-1和鳥嘌呤的1478 cm-1。利用這些訊號的半高寬,我們估計出每種鹼基的弛豫時間 (relaxation time): 胞嘧啶0.30 ps (C-C伸縮振動)、胸腺嘧啶 0.30 ps (N-H和C-H彎曲振動)、鳥嘌呤 0.30 ps (C=N伸縮振動) 和腺嘌呤0.21 ps (PO43-伸縮振動)。這些結果有機會用來檢測DNA中不同的鹼基。
摘要(英) Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful analytical technique since it reveals detailed insights into the vibrational modes of molecules, which is often regarded as the molecular fingerprints. DNA sequencing is the process of determining the precise order of nucleobases (adenine, cytosine, guanine, and thymine) within a DNA molecule. Because of its excellent specificity, SERS can be a potential tool for DNA sequencing. In this study, we explore the viability of using SERS to differentiate nucleobases. To achieve the goal, InGaN quantum wells were employed to build the SERS substrates. The nitride quantum wells enhance the Raman signals via two mechanisms in SERS, namely localized surface plasmon resonance (LSPR) and charge transfer (CT), which result in the distinct SERS spectrum of each nucleobase. In addition, the quantum wells produce the SERS images with multiple “bright” regions, attributed to the much densified hot spots. With the SERS images, we recorded the characteristic bands (the “fingerprints”) for each nucleobase, including 1000 cm-1 for Adenine, 1241 cm-1 for Cytosine, 1668 cm-1 for Thymine and 1478 cm-1 for Guanine. The four vibrational modes are of the relaxation time (approximately 0.30 ps for the C-C stretching of Cytosine, N-H and C-H bending of Thymine, C=N stretching of Guanine and 0.21 ps for the PO43- stretching of Adenine). These distinct signals can be used to identify the nucleobases in DNA’s with different sequences.
關鍵字(中) ★ 表面增強拉曼光譜
★ 局部表面電漿共振
★ 電荷轉移
★ 弛豫時間
關鍵字(英) ★ SERS
★ localized surface plasmon resonance
★ charge transfer
★ relaxation time
★ DNA
論文目次 CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDGMENT iii
LIST OF FIGURES vi
LIST OF TABLES vii
LIST OF ABBREVIATIONS viii
CHAPTER 1. INTRODUCTION 1
1.1. Motivation and overview 1
1.2. Raman scattering and Surface-Enhanced Raman Spectroscopy (SERS) 2
1.2.1. History of Raman scattering 2
1.2.2. Raman scattering theory 4
1.2.3. Mechanism of SERS 6
1.2.4. Application of SERS in detecting DNA 11
1.2.5. Quantum well (QW) theory 13
1.2.6. Recent application of Quantum well 15
1.3. Single pixel imaging 16
1.3.1. Principle 16
1.3.2. Digital micromirror device (DMD) 18
1.3.3. Hadamard patterns 19
1.4. Research objective 20
CHAPTER 2. EXPERIMENT 21
2.1. SERS substrate 21
2.1.1. Quantum-well structure 21
2.1.2. Cleaning process 22
2.1.3. Metal Deposition 22
2.1.4. Annealing process 22
2.2. Nucleobase preparations 23
2.3. Measurement 23
2.3.1. Raman spectra 23
2.3.2. SERS mappings 23
CHAPTER 3. RESULT AND DISCUSSION 24
3.1. The SERS spectra of the nucleobases 24
3.1.1. The reconstruction of the SERS spectra 24
3.1.2. The specificity of the SERS spectra 27
3.2. The SERS single-pixel imaging of the nucleobases 30
3.3. The relaxation time of the vibrational modes of the nucleobases 33
CHAPTER 4. CONCLUSION AND FUTURE WORK 37
4.1. Conclusion 37
4.2. Future work 38
REFERENCE 41
參考文獻 [1] Lei Ouyang, Yaowu Hu, Lihua Zhu, Gary J. Cheng, and Joseph Irudayaraj. “A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation”. Biosensors and Bioelectronics, 92, 2017, pp. 755 - 762.
DOI: 10.1016/j.bios.2016.09.072/
[2] Lucie ŠTOLCOVÁ, Jan PROŠKA, Marek PROCHÁZKA. Rationally designed SERS substrates for the ultrasensitive detection of biologically important compounds. Nanocon 2013.
[3] M. Fleischmann, P.J. Hendra, and A.J. McQuillan. “Raman spectra of pyridine adsorbed at a silver electrode”. Chem. Phys. Lett., 26, 2, 1974, pp. 163 – 166.
DOI: 10.1016/0009-2614(74)85388-1
[4] Lili Yang, Yong Yang, Yunfeng a, Shuai Li, Yuquan Wei, Zhengren Huang, and Nguyen Viet Long. “Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application”. Nanomaterials, 7, 11, 2017, pp. 398.
DOI: 10.3390/nano7110398
[5] Li-Jia Xu, Zhi-Chao Lei, Jiuxing Li, Cheng Zong, Chaoyong James Yang, and Bin Ren. “Label-free Surface-enhanced Raman Spectroscopy Detection of DNA with Single-base Sensitivity”. J. Am. Chem. Soc, 137, 15, 2015, pp. 5149 – 5154.
DOI: 10.1021/jacs.5b01426
[6] C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y. P. Zhao and L. H. Wang. “An ultrasensitive SERS sensor for simultaneous detection of multiple cancer-related miRNAs”. Nanoscale, 8, 2016, pp. 17365 - 17373
DOI: 10.1039/C6NR05504D
[7] C. V. Raman. “The Colour of the Sea”. Nature, 108, 1921, pp. 367.
DOI: 10.1038/108367a0
[8] C. V. Raman. “On the Molecular Scattering of Light in Water and the Colour of the Sea”. Proc. R. Soc. Lond. A, 101, 1922, pp. 64 - 80.
DOI: 10.1098/rspa.1922.0025
[9] Braun, Charles L.; Smirnov, and Sergei N. “Why is water blue?”. J. Chem. Educ, 70, 8, 1993, pp. 612.
DOI: 10.1021/ed070p612
[10] Ramdas, L. A. “Dr. C. V. Raman (1888-1970), Part 2”. Journal of Physics Education, 1, 3, 1973, pp. 2-18.
[11] Liping Xie, Hedele Zeng, Jiaxin Zhu, Zelin Zhang, Hong-bin Sun, Wen Xia, and Yanan Du. “State of the art in flexible SERS sensors toward label-free and onsite detection: from design to applications”. Nano Research, 15, 5, 2022, pp. 4374 - 4394.
DOI: 10.1007/s12274-021-4017-4
[12] Lockwood, D.J. “Rayleigh and Mie Scattering. In: Luo, M.R. (eds)”. Encyclopedia of Color Science and Technology. Springer, New York, 1996, pp. 1097 – 1107
DOI: 10.1007/978-1-4419-8071-7_218
[13] Taimur Athar. Emerging Nanotechnologies for Manufacturing (Second Edition). Elsevier, 2015.
DOI: 10.1016/C2013-0-13991-8
[14] Blackie, Evan J.; Le Ru, Eric C.; Etchegoin, Pablo G. “Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules”. J. Am. Chem. Soc., 131, 40, 2009, pp. 14466 – 14472.
DOI: 10.1021/ja905319w
[15] Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, and Fabris L. “A review on Surface-Enhanced Raman Scattering”. Biosensors, 9, 57, 2019.
DOI: 10.3990/bios9020057
[16] Le Ru, E.C., and Etchegoin, P.G. “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy”. Chem. Phys. Lett., 423, 1-3, 2006, pp. 63 – 66.
DOI: 10.1016/j.cplett.2006.03.042
[17] Alessandri, I., and Lombardi, J.R. “Enhanced Raman scattering with dielectrics”. Chem. Rev., 116, 24, 2016, pp. 14921 – 14981.
DOI: 10.1021/acs.chemrev.6b00365
[18] Moskovits, M. “Surface-enhanced Raman spectroscopy: A brief retrospective”. J.Raman Spectrosc., 36, 2005, pp. 485 – 496.
DOI: 10.1002/jrs.1362
[19] Seth M. Morton and Lasse Jensen. “Understanding the Molecule-Surface Chemical Coupling in SERS”. J. Am. Chem. Soc., 131, 11, 2009, pp. 4090 – 4098.
DOI: 10.1021/ja809143c
[20] Shan Cong, Xiaohong Liu, Yuxiao Jiang, and Wei Zhang. “Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions”. Innovation (Camb), 1, 3, 2020.
DOI: 10.1016/j.xinn.2020.100051
[21] Alyssa B. Zrimsek, Naihao Chiang, Michael Mattei, Stephanie Zaleski, Michael O. McAnally, Craig T. Chapman, Anne-Isabelle Henry, George C. Schatz, and Richard P. Van Duyne. “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy”. Chem. Rev., 117, 11, 2017, pp. 7583 – 7613.
DOI: 10.1021/acs.chemrev.6b00552
[22] Edyta Pyrak, Jan Krajczewski, Artur Kowalik, Andrzej Kudelski, and Aleksandra Jaworska. “Surface Enhanced Raman Spectroscopy for DNA Biosensors—How Far Are We?”. Molecules, 24, 24, 2019, pp. 4423.
DOI:10.3390/molecules24244423
[23] Fenglei Gao, Jianping Lei, and Huangxian Ju. “Label-Free Surface-Enhanced Raman Spectroscopy for Sensitive DNA Detection by DNA-Mediated Silver Nanoparticle Growth”. Anal. Chem., 85, 24, 2013, pp. 11788 – 11793
DOI: 10.1021/ac4032109
[24] Jiao Cao, Hai-Ling Liu, Jin-Mei Yang, Zhong-Qiu Li, Dong-Rui Yang, Li-Na Ji, Kang Wang, and Xing-Hua Xia. “SERS Detection of Nucleobase in Single Silver Plasmonic Nanopore”. ACS Sens, 5, 7, 2020, pp. 2198 – 2204.
DOI: 10.1021/acssensors.0c00844
[25] Valentina Mussi, Mario Ledda, Annalisa Convertino, and Antonella Lisi. “Raman Mapping of Biological Systems Interacting with a Disordered Nanostructured Surface: A Simple and Powerful Approach to the Label-Free Analysis of Single DNA Bases”. Micromachines, 12, 3, 2021, pp. 264.
DOI: 10.3390/mi12030264
[26] M. W. Prairie and R. M. Kolbas. “A general derivation of the density of states function for quantum wells and superlattices”. Superlattices and Microstructures, 7, 4, 1990, pp. 269 – 277.
DOI: 10.1016/0749-6036(90)90208-O
[27] Fox, Mark; Ispasoiu, and Radu. “Quantum Wells, Superlattices, and Band-Gap Engineering”. Springer Handbook of Electronic and Photonic Materials, US: Springer, 2006, pp. 1021 – 1040
DOI: 10.1007/978-0-387-29185-7_42
[28] Nag, B. R. Physics of quantum well devices. Boston: Kluwer Academic Publishers, 2002.
[29] Sayed, Islam; Bedair, S. M. “Quantum Well Solar Cells: Principles, Recent Progress, and Potential”. IEEE Journal of Photovoltaics, 9, 2, 2019, pp. 402 – 423.
DOI: 10.1109/JPHOTOV.2019.2892079
[30] J. Han; M. H. Crawford; R. J. Shul; J. J. Figiel; M. Banas; L. Zhang; Y. K. Song; H. Zhou; and A. V. Nurmikko. “AlGaN/GaN quantum well ultraviolet light emitting diodes”. Appl. Phys. Lett., 73, 1998, pp. 1688 – 1690.
DOI: 10.1063/1.122246
[31] Q. Zhou, M. Xu and H. Wang. “Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes”. Opto-Electronics Review, 24, 1, 2016, pp. 1 – 9.
DOI: 10.1515/oere-2016-0004
[32] Guobin Liu, Shun-Lien Chuang, Seoung-Hwan Park. “Optical gain of strained GaAsSb/GaAs quantum-well lasers: A self-consistent approach”. J. Appl. Phys., 88, ,2000, pp. 5554 – 5561.
DOI: 10.1063/1.1319328
[33] Fan-Ching Chien, Ting Fu Zhang, Chi Chen, Thi Anh Nguyet Nguyen, Song-Yu Wang, Syuan Miao Lai, Chia-Hua Lin, Chun-Kai Huang, Cheng-Yi Liu, and Kun-Yu Lai. “Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots”. ACS Appl. Nano Mater., 4, 3, 2021, pp. 2614 − 2620.
DOI: 10.1021/acsanm.0c03265
[34] Matthew P. Edgar, Graham M. Gibson and Miles J. Padgett. “Principles and prospects for single-pixel imaging”. Nature Photonics, 13, 2019, pp. 13 – 20.
DOI: 10.1038/s41566-018-0300-7
[35] Graham M. Gibson, Steven D. Johnson, and Miles J. Padgett. “Single-pixel imaging 12 years on: a review”. Optics Express, 28, 19, 2020, pp. 28190 – 28208.
DOI: 10.1364/OE.403195
[36] Lachetta Mario, Sandmeyer Hauke, Sandmeyer Alice, Esch Jan Schulte am, Huser Thomas and Müller Marcel. “Simulating digital micromirror devices for patterning coherent excitation light in structured illumination microscopy”. Phil. Trans. R. Soc. A., 379, 2199, 2021.
DOI: 10.1098/rsta.2020.0147
[37] Taerim Yoon, Chang-Seok Kim, Kyujung Kim, and Jong-ryul Choi. “Emerging applications of digital micromirror devices in biophotonic fields”. Optics & Laser Technology, 104, 2018, pp. 17 – 25.
DOI: 10.1016/j.optlastec.2018.02.005
[38] Ziyun Zhuang, and Ho Pui Ho. “Application of digital micromirror devices (DMD) in biomedical instruments”. Journal of Innovative Optical Health Sciences, 13, 6, 2020.
DOI: 10.1142/S1793545820300116
[39] Feng W, Zhang F, Qu X, Zheng S. “Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera”. Sensors, 16, 3, 331, 2016.
DOI: 10.3390/s16030331
[40] J. Kundu, O. Neumann, B. G. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. E. Scuseria, and N. J. Halas. “Adenine- and Adenosine Monophosphate (AMP)-Gold Binding Interactions Studied by Surface-Enhanced Raman and Infrared Spectroscopies”. J. Phys. Chem. C., 113, 2009, pp. 14390 – 14397.
DOI: 10.1021/jp903126f
[41] Kexi Sun, Qing Huang, Guowen Meng, and Yilin Lu. “Highly Sensitive and Selective SERS Label-free Detection of PCB-77 using DNA Aptamer Modified Ag-nanorod Arrays”. ACS Appl. Mater. Interfaces., 8, 8, 2016, pp. 5723 – 5728.
DOI: 10.1021/acsami.5b12866
[42] Edyta Pyrak, Aleksandra Jaworska. and Andrzej Kudelski. “SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments”. Molecules, 24, 21, 3921, 2019.
DOI: 10.3390/molecules24213921
[43] Wafa Safar, Aicha Azziz, Mathieu Edely, and Marc Lamy de la Chapelle. “Conventional Raman, SERS and TERS Studies of DNA Compounds”. Chemosensors, 11, 7, 399, 2023.
DOI: 10.3390/chemosensors11070399
[44] Samuel Adesoye, and Kristen Dellinger. “ZnO and TiO2 nanostructures for surface-enhanced Raman scattering-based bio-sensing: A review”. Sensing and Bio-Sensing Research, 37, 100499, 2022.
DOI: 10.1016/j.sbsr.2022.100499
[45] Hongye Liu, Qianwen Li, Yan Ma, Siyu Wang, Yanan Wang, Bing Zhao, Lichun Zhao, Ziping Jiang, Lili Xu, and Weidong Ruan. “Study of charge transfer contribution in Surface-Enhanced Raman scattering (SERS) based on indium oxide nanoparticle substrates”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 303, 123168, 2023.
DOI: 10.1016/j.saa.2023.123168
[46] Xiaolei Zhang, Zhi Yu, Wei Ji, Huimin Sui, Qian Cong, Xu Wang, and Bing Zhao. “Charge-Transfer Effect on Surface-Enhanced Raman Scattering (SERS) in an Ordered Ag NPs/4-Mercaptobenzoic Acid/TiO2 System”. J. Phys. Chem. C., 119, 39, 2015, pp. 22439 – 22444.
DOI: 10.1021/acs.jpcc.5b06001
[47] X.-Y. Zhu. “Charge Transport at Metal-Molecule Interfaces: A Spectroscopic View”. J. Phys. Chem. B., 108, 2004, pp. 8778 – 8793.
DOI: 10.1021/jp0370876
[48] Jianjun Zhang, and Jing Li. “Chapter 11 - Spacecraft, Spatial Cognitive Engine Technology”. Spatial Cognitive Engine Technology, Academic Press, 2023, pp. 129 - 162.
DOI: 10.1016/B978-0-323-95107-4.00004-4
[49] Carlos Diego L. de Albuquerque and Zachary D. Schultz. “Super-resolution SERS Imaging of Single Particles in Cells”. Anal Chem., 92, 13, 2020, pp. 9389 – 9398.
DOI: 10.1021/acs.analchem.0c01864
[50] Muntean CM, and Bratu I. “Molecular relaxation processes in calf-thymus DNA, in the presence of Mn2+ and Na+ ions: a Raman spectroscopic study”. Spectroscopy, 22, 5, 2008, pp. 345 – 359.
DOI: 10.1155/2008/854895
[51] Mohammad A. Omary, and Howard H. Patterson. “Luminescence Theory”. Encyclopedia of Spectroscopy and Spectrometry, Academic Press, 1999, pp. 1186-1207, DOI: 10.1006/rwsp.2000.0160
[52] Hendrik Deschout, Francesca Cella Zanacchi, Michael Mlodzianoski, Alberto Diaspro, Joerg Bewersdorf, Samuel T Hess and Kevin Braeckmans. “Precisely and accurately localizing single emitters in fluorescence microscopy”. Nat Methods, 11, 2014, pp. 253 – 266.
DOI: 10.1038/nmeth.2843
[53] Lelek, M., Gyparaki, M.T., Beliu, G. et al. “Single-molecule localization microscopy”. Nat Rev Methods Primers, 1, 39, 2021.
DOI: 10.1038/s43586-021-00038-x
[54] George P Mathew. “Characterization of stimulated Raman scattering in different materials”. Master’s thesis, Cochin University of Science and Technology, 2015.
DOI: 10.13140/RG.2.2.35363.25126
[55] Ji-Xin Cheng and Xiaoliang Sunney Xie. Coherent Raman Scattering Microscopy, CRC Press, 2018.
[56] Carmen Tripon, Cristina M. Muntean, Ioan Bratu, Konstantinos Nalpantidis, and Volker Deckert. “(Sub)picosecond processes in DNA and RNA constituents: a Raman spectroscopic assessment”. Polymer Bulletin., 74, 2017, pp. 4087 – 4100.
DOI: 10.1007/s00289-017-1938-x
[57] Evangelaras, H., Koukouvios, C., & Seberry, J. “Applications of Hadamard matrices”. Journal of telecommunications and information technology, 2, 2003, pp. 3-10.
DOI: 10.26636/jtit.2003.2.176
指導教授 賴昆佑 簡汎清(Kun-yu Lai Fan-Ching Chien) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明