參考文獻 |
[1] Lei Ouyang, Yaowu Hu, Lihua Zhu, Gary J. Cheng, and Joseph Irudayaraj. “A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation”. Biosensors and Bioelectronics, 92, 2017, pp. 755 - 762.
DOI: 10.1016/j.bios.2016.09.072/
[2] Lucie ŠTOLCOVÁ, Jan PROŠKA, Marek PROCHÁZKA. Rationally designed SERS substrates for the ultrasensitive detection of biologically important compounds. Nanocon 2013.
[3] M. Fleischmann, P.J. Hendra, and A.J. McQuillan. “Raman spectra of pyridine adsorbed at a silver electrode”. Chem. Phys. Lett., 26, 2, 1974, pp. 163 – 166.
DOI: 10.1016/0009-2614(74)85388-1
[4] Lili Yang, Yong Yang, Yunfeng a, Shuai Li, Yuquan Wei, Zhengren Huang, and Nguyen Viet Long. “Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application”. Nanomaterials, 7, 11, 2017, pp. 398.
DOI: 10.3390/nano7110398
[5] Li-Jia Xu, Zhi-Chao Lei, Jiuxing Li, Cheng Zong, Chaoyong James Yang, and Bin Ren. “Label-free Surface-enhanced Raman Spectroscopy Detection of DNA with Single-base Sensitivity”. J. Am. Chem. Soc, 137, 15, 2015, pp. 5149 – 5154.
DOI: 10.1021/jacs.5b01426
[6] C. Y. Song, Y. J. Yang, B. Y. Yang, Y. Z. Sun, Y. P. Zhao and L. H. Wang. “An ultrasensitive SERS sensor for simultaneous detection of multiple cancer-related miRNAs”. Nanoscale, 8, 2016, pp. 17365 - 17373
DOI: 10.1039/C6NR05504D
[7] C. V. Raman. “The Colour of the Sea”. Nature, 108, 1921, pp. 367.
DOI: 10.1038/108367a0
[8] C. V. Raman. “On the Molecular Scattering of Light in Water and the Colour of the Sea”. Proc. R. Soc. Lond. A, 101, 1922, pp. 64 - 80.
DOI: 10.1098/rspa.1922.0025
[9] Braun, Charles L.; Smirnov, and Sergei N. “Why is water blue?”. J. Chem. Educ, 70, 8, 1993, pp. 612.
DOI: 10.1021/ed070p612
[10] Ramdas, L. A. “Dr. C. V. Raman (1888-1970), Part 2”. Journal of Physics Education, 1, 3, 1973, pp. 2-18.
[11] Liping Xie, Hedele Zeng, Jiaxin Zhu, Zelin Zhang, Hong-bin Sun, Wen Xia, and Yanan Du. “State of the art in flexible SERS sensors toward label-free and onsite detection: from design to applications”. Nano Research, 15, 5, 2022, pp. 4374 - 4394.
DOI: 10.1007/s12274-021-4017-4
[12] Lockwood, D.J. “Rayleigh and Mie Scattering. In: Luo, M.R. (eds)”. Encyclopedia of Color Science and Technology. Springer, New York, 1996, pp. 1097 – 1107
DOI: 10.1007/978-1-4419-8071-7_218
[13] Taimur Athar. Emerging Nanotechnologies for Manufacturing (Second Edition). Elsevier, 2015.
DOI: 10.1016/C2013-0-13991-8
[14] Blackie, Evan J.; Le Ru, Eric C.; Etchegoin, Pablo G. “Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules”. J. Am. Chem. Soc., 131, 40, 2009, pp. 14466 – 14472.
DOI: 10.1021/ja905319w
[15] Pilot R, Signorini R, Durante C, Orian L, Bhamidipati M, and Fabris L. “A review on Surface-Enhanced Raman Scattering”. Biosensors, 9, 57, 2019.
DOI: 10.3990/bios9020057
[16] Le Ru, E.C., and Etchegoin, P.G. “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy”. Chem. Phys. Lett., 423, 1-3, 2006, pp. 63 – 66.
DOI: 10.1016/j.cplett.2006.03.042
[17] Alessandri, I., and Lombardi, J.R. “Enhanced Raman scattering with dielectrics”. Chem. Rev., 116, 24, 2016, pp. 14921 – 14981.
DOI: 10.1021/acs.chemrev.6b00365
[18] Moskovits, M. “Surface-enhanced Raman spectroscopy: A brief retrospective”. J.Raman Spectrosc., 36, 2005, pp. 485 – 496.
DOI: 10.1002/jrs.1362
[19] Seth M. Morton and Lasse Jensen. “Understanding the Molecule-Surface Chemical Coupling in SERS”. J. Am. Chem. Soc., 131, 11, 2009, pp. 4090 – 4098.
DOI: 10.1021/ja809143c
[20] Shan Cong, Xiaohong Liu, Yuxiao Jiang, and Wei Zhang. “Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions”. Innovation (Camb), 1, 3, 2020.
DOI: 10.1016/j.xinn.2020.100051
[21] Alyssa B. Zrimsek, Naihao Chiang, Michael Mattei, Stephanie Zaleski, Michael O. McAnally, Craig T. Chapman, Anne-Isabelle Henry, George C. Schatz, and Richard P. Van Duyne. “Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy”. Chem. Rev., 117, 11, 2017, pp. 7583 – 7613.
DOI: 10.1021/acs.chemrev.6b00552
[22] Edyta Pyrak, Jan Krajczewski, Artur Kowalik, Andrzej Kudelski, and Aleksandra Jaworska. “Surface Enhanced Raman Spectroscopy for DNA Biosensors—How Far Are We?”. Molecules, 24, 24, 2019, pp. 4423.
DOI:10.3390/molecules24244423
[23] Fenglei Gao, Jianping Lei, and Huangxian Ju. “Label-Free Surface-Enhanced Raman Spectroscopy for Sensitive DNA Detection by DNA-Mediated Silver Nanoparticle Growth”. Anal. Chem., 85, 24, 2013, pp. 11788 – 11793
DOI: 10.1021/ac4032109
[24] Jiao Cao, Hai-Ling Liu, Jin-Mei Yang, Zhong-Qiu Li, Dong-Rui Yang, Li-Na Ji, Kang Wang, and Xing-Hua Xia. “SERS Detection of Nucleobase in Single Silver Plasmonic Nanopore”. ACS Sens, 5, 7, 2020, pp. 2198 – 2204.
DOI: 10.1021/acssensors.0c00844
[25] Valentina Mussi, Mario Ledda, Annalisa Convertino, and Antonella Lisi. “Raman Mapping of Biological Systems Interacting with a Disordered Nanostructured Surface: A Simple and Powerful Approach to the Label-Free Analysis of Single DNA Bases”. Micromachines, 12, 3, 2021, pp. 264.
DOI: 10.3390/mi12030264
[26] M. W. Prairie and R. M. Kolbas. “A general derivation of the density of states function for quantum wells and superlattices”. Superlattices and Microstructures, 7, 4, 1990, pp. 269 – 277.
DOI: 10.1016/0749-6036(90)90208-O
[27] Fox, Mark; Ispasoiu, and Radu. “Quantum Wells, Superlattices, and Band-Gap Engineering”. Springer Handbook of Electronic and Photonic Materials, US: Springer, 2006, pp. 1021 – 1040
DOI: 10.1007/978-0-387-29185-7_42
[28] Nag, B. R. Physics of quantum well devices. Boston: Kluwer Academic Publishers, 2002.
[29] Sayed, Islam; Bedair, S. M. “Quantum Well Solar Cells: Principles, Recent Progress, and Potential”. IEEE Journal of Photovoltaics, 9, 2, 2019, pp. 402 – 423.
DOI: 10.1109/JPHOTOV.2019.2892079
[30] J. Han; M. H. Crawford; R. J. Shul; J. J. Figiel; M. Banas; L. Zhang; Y. K. Song; H. Zhou; and A. V. Nurmikko. “AlGaN/GaN quantum well ultraviolet light emitting diodes”. Appl. Phys. Lett., 73, 1998, pp. 1688 – 1690.
DOI: 10.1063/1.122246
[31] Q. Zhou, M. Xu and H. Wang. “Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes”. Opto-Electronics Review, 24, 1, 2016, pp. 1 – 9.
DOI: 10.1515/oere-2016-0004
[32] Guobin Liu, Shun-Lien Chuang, Seoung-Hwan Park. “Optical gain of strained GaAsSb/GaAs quantum-well lasers: A self-consistent approach”. J. Appl. Phys., 88, ,2000, pp. 5554 – 5561.
DOI: 10.1063/1.1319328
[33] Fan-Ching Chien, Ting Fu Zhang, Chi Chen, Thi Anh Nguyet Nguyen, Song-Yu Wang, Syuan Miao Lai, Chia-Hua Lin, Chun-Kai Huang, Cheng-Yi Liu, and Kun-Yu Lai. “Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots”. ACS Appl. Nano Mater., 4, 3, 2021, pp. 2614 − 2620.
DOI: 10.1021/acsanm.0c03265
[34] Matthew P. Edgar, Graham M. Gibson and Miles J. Padgett. “Principles and prospects for single-pixel imaging”. Nature Photonics, 13, 2019, pp. 13 – 20.
DOI: 10.1038/s41566-018-0300-7
[35] Graham M. Gibson, Steven D. Johnson, and Miles J. Padgett. “Single-pixel imaging 12 years on: a review”. Optics Express, 28, 19, 2020, pp. 28190 – 28208.
DOI: 10.1364/OE.403195
[36] Lachetta Mario, Sandmeyer Hauke, Sandmeyer Alice, Esch Jan Schulte am, Huser Thomas and Müller Marcel. “Simulating digital micromirror devices for patterning coherent excitation light in structured illumination microscopy”. Phil. Trans. R. Soc. A., 379, 2199, 2021.
DOI: 10.1098/rsta.2020.0147
[37] Taerim Yoon, Chang-Seok Kim, Kyujung Kim, and Jong-ryul Choi. “Emerging applications of digital micromirror devices in biophotonic fields”. Optics & Laser Technology, 104, 2018, pp. 17 – 25.
DOI: 10.1016/j.optlastec.2018.02.005
[38] Ziyun Zhuang, and Ho Pui Ho. “Application of digital micromirror devices (DMD) in biomedical instruments”. Journal of Innovative Optical Health Sciences, 13, 6, 2020.
DOI: 10.1142/S1793545820300116
[39] Feng W, Zhang F, Qu X, Zheng S. “Per-Pixel Coded Exposure for High-Speed and High-Resolution Imaging Using a Digital Micromirror Device Camera”. Sensors, 16, 3, 331, 2016.
DOI: 10.3390/s16030331
[40] J. Kundu, O. Neumann, B. G. Janesko, D. Zhang, S. Lal, A. Barhoumi, G. E. Scuseria, and N. J. Halas. “Adenine- and Adenosine Monophosphate (AMP)-Gold Binding Interactions Studied by Surface-Enhanced Raman and Infrared Spectroscopies”. J. Phys. Chem. C., 113, 2009, pp. 14390 – 14397.
DOI: 10.1021/jp903126f
[41] Kexi Sun, Qing Huang, Guowen Meng, and Yilin Lu. “Highly Sensitive and Selective SERS Label-free Detection of PCB-77 using DNA Aptamer Modified Ag-nanorod Arrays”. ACS Appl. Mater. Interfaces., 8, 8, 2016, pp. 5723 – 5728.
DOI: 10.1021/acsami.5b12866
[42] Edyta Pyrak, Aleksandra Jaworska. and Andrzej Kudelski. “SERS Studies of Adsorption on Gold Surfaces of Mononucleotides with Attached Hexanethiol Moiety: Comparison with Selected Single-Stranded Thiolated DNA Fragments”. Molecules, 24, 21, 3921, 2019.
DOI: 10.3390/molecules24213921
[43] Wafa Safar, Aicha Azziz, Mathieu Edely, and Marc Lamy de la Chapelle. “Conventional Raman, SERS and TERS Studies of DNA Compounds”. Chemosensors, 11, 7, 399, 2023.
DOI: 10.3390/chemosensors11070399
[44] Samuel Adesoye, and Kristen Dellinger. “ZnO and TiO2 nanostructures for surface-enhanced Raman scattering-based bio-sensing: A review”. Sensing and Bio-Sensing Research, 37, 100499, 2022.
DOI: 10.1016/j.sbsr.2022.100499
[45] Hongye Liu, Qianwen Li, Yan Ma, Siyu Wang, Yanan Wang, Bing Zhao, Lichun Zhao, Ziping Jiang, Lili Xu, and Weidong Ruan. “Study of charge transfer contribution in Surface-Enhanced Raman scattering (SERS) based on indium oxide nanoparticle substrates”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 303, 123168, 2023.
DOI: 10.1016/j.saa.2023.123168
[46] Xiaolei Zhang, Zhi Yu, Wei Ji, Huimin Sui, Qian Cong, Xu Wang, and Bing Zhao. “Charge-Transfer Effect on Surface-Enhanced Raman Scattering (SERS) in an Ordered Ag NPs/4-Mercaptobenzoic Acid/TiO2 System”. J. Phys. Chem. C., 119, 39, 2015, pp. 22439 – 22444.
DOI: 10.1021/acs.jpcc.5b06001
[47] X.-Y. Zhu. “Charge Transport at Metal-Molecule Interfaces: A Spectroscopic View”. J. Phys. Chem. B., 108, 2004, pp. 8778 – 8793.
DOI: 10.1021/jp0370876
[48] Jianjun Zhang, and Jing Li. “Chapter 11 - Spacecraft, Spatial Cognitive Engine Technology”. Spatial Cognitive Engine Technology, Academic Press, 2023, pp. 129 - 162.
DOI: 10.1016/B978-0-323-95107-4.00004-4
[49] Carlos Diego L. de Albuquerque and Zachary D. Schultz. “Super-resolution SERS Imaging of Single Particles in Cells”. Anal Chem., 92, 13, 2020, pp. 9389 – 9398.
DOI: 10.1021/acs.analchem.0c01864
[50] Muntean CM, and Bratu I. “Molecular relaxation processes in calf-thymus DNA, in the presence of Mn2+ and Na+ ions: a Raman spectroscopic study”. Spectroscopy, 22, 5, 2008, pp. 345 – 359.
DOI: 10.1155/2008/854895
[51] Mohammad A. Omary, and Howard H. Patterson. “Luminescence Theory”. Encyclopedia of Spectroscopy and Spectrometry, Academic Press, 1999, pp. 1186-1207, DOI: 10.1006/rwsp.2000.0160
[52] Hendrik Deschout, Francesca Cella Zanacchi, Michael Mlodzianoski, Alberto Diaspro, Joerg Bewersdorf, Samuel T Hess and Kevin Braeckmans. “Precisely and accurately localizing single emitters in fluorescence microscopy”. Nat Methods, 11, 2014, pp. 253 – 266.
DOI: 10.1038/nmeth.2843
[53] Lelek, M., Gyparaki, M.T., Beliu, G. et al. “Single-molecule localization microscopy”. Nat Rev Methods Primers, 1, 39, 2021.
DOI: 10.1038/s43586-021-00038-x
[54] George P Mathew. “Characterization of stimulated Raman scattering in different materials”. Master’s thesis, Cochin University of Science and Technology, 2015.
DOI: 10.13140/RG.2.2.35363.25126
[55] Ji-Xin Cheng and Xiaoliang Sunney Xie. Coherent Raman Scattering Microscopy, CRC Press, 2018.
[56] Carmen Tripon, Cristina M. Muntean, Ioan Bratu, Konstantinos Nalpantidis, and Volker Deckert. “(Sub)picosecond processes in DNA and RNA constituents: a Raman spectroscopic assessment”. Polymer Bulletin., 74, 2017, pp. 4087 – 4100.
DOI: 10.1007/s00289-017-1938-x
[57] Evangelaras, H., Koukouvios, C., & Seberry, J. “Applications of Hadamard matrices”. Journal of telecommunications and information technology, 2, 2003, pp. 3-10.
DOI: 10.26636/jtit.2003.2.176 |