摘要(英) |
This study uses a Remote Resistivity Monitoring System (R2MS) to monitor a large-scale landslide area in the Lantai area of Taiping Mountain, Datong Township, Yilan County, Taiwan, using a mixed array different from the traditional array. By continuous electrical resistivity tomography (ERT) monitoring, this study collects resistivity profile data from the end of October 2022 to the end of October 2023 and combines it with on-site core samples, precipitation, groundwater levels, and observations from the surface and in-hole linear wire potentiometers data are analyzed. The results showed that the resistivity profile is consistent with the existing core samples.
By observing the changes in monthly rainfall during the same period, it was found that the precipitation from December 2022 to June 2023 fit with the changed behavior of the wet/dry season. Thus, the change rate profiles of the monthly average resistivity of this period were used. The results show that the resistivity of the colluvium layer and the area of the suspected shear zone have the changing characteristics of wet and dry periods, consistent with relevant physical imagination.
This study found the displacement in the surface and in-hole linear wire potentiometer data from mid-August to the beginning of September 2023. It analyzed this event using the daily average resistivity change rate average profile. The results show that the ERT method responds well to displacement events. In addition, this study also compares the result with the small-scale slip event that occurred in the study area in the summer of 2020 and gives possible reasons for the difference in resistivity change rates between the two events. It shows that continuous ERT monitoring has the potential to contribute to the tectonic changes and mechanisms of landslide occurrence. |
參考文獻 |
1. Advanced Geosciences, I. (2009). Instruction manual for EarthImager 2D, version 2.4.0, Advanced Geosciences Inc.
2. Aster, R. C., et al. (2018). Parameter estimation and inverse problems, Elsevier.
3. Brunet, P., et al. (2010). "Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)–A case study in the Cevennes area, France." Journal of Hydrology 380(1-2): 146-153.
4. Chambers, J., et al. (2014). "4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment." Near Surface Geophysics 12(1): 61-72.
5. Chambers, J. E., et al. (2006). "Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site." Geophysics 71(6): B231-B239.
6. Chiang, C.-W., et al. (2010). "The deep electrical structure of southern Taiwan and its tectonic implications." TAO: Terrestrial, Atmospheric and Oceanic Sciences 21(6): 8.
7. Chien, F. C. and H. C. Kuo (2011). "On the extreme rainfall of Typhoon Morakot (2009)." Journal of Geophysical Research: Atmospheres 116(D5).
8. Constable, S. C., et al. (1987). "Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data." Geophysics 52(3): 289-300.
9. Cruden, D. (1991). "A simple definition of a landslide." Bulletin of Engineering Geology & the Environment 43(1).
10. Dai, F., et al. (2002). "Landslide risk assessment and management: an overview." Engineering geology 64(1): 65-87.
11. Drahor, M. G., et al. (2006). "Application of electrical resistivity tomography technique forinvestigation of landslides: a case from Turkey." Environmental Geology 50: 147-155.
12. Falco, P., et al. (2013). "Fracture characterisation using geoelectric null-arrays." Journal of Applied Geophysics 93: 33-42.
13. Guzzetti, F., et al. (2012). "Landslide inventory maps: New tools for an old problem." Earth-Science Reviews 112(1-2): 42-66.
14. Henny, L., et al. (2021). "Extreme rainfall in Taiwan: Seasonal statistics and trends." Journal of Climate 34(12): 4711-4731.
15. Ho, C. S. (1986). "A synthesis of the geologic evolution of Taiwan." Tectonophysics 125(1): 1-16.
16. Huang, W.-C., et al. (2012). "The impact of climate change on rainfall frequency in Taiwan." Terr. Atmos. Ocean. Sci 10.
17. Jodry, C., et al. (2019). "2D-ERT monitoring of soil moisture seasonal behaviour in a river levee: A case study." Journal of Applied Geophysics 167: 140-151.
18. Jongmans, D. and S. Garambois (2007). "Geophysical investigation of landslides: a review." Bulletin de la Société géologique de France 178(2): 101-112.
19. Kemna, A., et al. (2002). "Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models." Journal of Hydrology 267(3-4): 125-146.
20. Kornei, K. (2019). A massive experiment in Taiwan aims to reveal landslides’ surprising effect on the climate. Science. doi: 10.1126/science.aba2653.
21. Lapenna, V. and A. Perrone (2022). "Time-lapse electrical resistivity tomography (TL-ERT) for landslide monitoring: Recent advances and future directions." Applied Sciences 12(3): 1425.
22. Lin, M., et al. (2017). "Evolution and stability analysis of a deep-seated landslide in Lantai area, Taiwan. " Geotechnical Hazard Mitigations: Experiment, Theory and Practice—Proceedings of the 5th International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation.
23. Muhammad, S., et al. (2022). "Spatial appraisal of aquifer characterization through hydrogeophysical investigations in central part of Bari Doab, Punjab, Pakistan." Environmental Monitoring and Assessment 194.
24. Okpoli, C. C. (2013). "Sensitivity and Resolution Capacity of Electrode Configurations." International Journal of Geophysics 2013: 608037.
25. Perrone, A., et al. (2014). "Electrical resistivity tomography technique for landslide investigation: A review." Earth-Science Reviews 135: 65-82.
26. Petley, D. N., et al. (2005). "The use of surface monitoring data for the interpretation of landslide movement patterns." Geomorphology 66(1): 133-147.
27. Suppe, J. (1981). "Mechanics of mountain building and metamorphism in Taiwan." Memoir of the Geological Society of China (Taiwan) 4: 67-89.
28. Szalai, S. and L. Szarka (2008). "On the classification of surface geoelectric arrays." Geophysical Prospecting 56(2): 159-175.
29. Szalai, S., et al. (2020). "An alternative way in electrical resistivity prospection: the quasi-null arrays." Geophysical Journal International 220(3): 1463-1480.
30. Tsai, W.-N., et al. (2021). "Electrical Resistivity Tomography (ERT) Monitoring for Landslides: Case Study in the Lantai Area, Yilan Taiping Mountain, Northeast Taiwan." Frontiers in Earth Science 9.
31. Tsou, C.-Y., et al. (2011). "Catastrophic landslide induced by typhoon Morakot, Shiaolin, Taiwan." Geomorphology 127(3-4): 166-178.
32. Vogel, C. R. (2002). Computational methods for inverse problems, SIAM.
33. 三聯科技:VW 電子式水壓計。2024年,取自https://www.sanlien.com.tw/product/vw-%E9%9B%BB%E5%AD%90%E5%BC%8F%E6%B0%B4%E5%A3%93%E8%A8%88/
34. 中華民國行政院交通部中央氣象署: 111年度氣象年報(中文)。 2023年,取自https://www.cwa.gov.tw/Data/service/notice/download/Publish_20230922095829.pdf.
35. 王國隆等,108年蘭台大規模崩塌潛勢示範區觀測科技整合與分析期末報告書。行政院農業部農村發展及水土保持署,2020年。
36. 王國隆等,112年蘭台大規模崩塌潛勢示範區觀測科技整合研究期末報告書。行政院農業部農村發展及水土保持署,2024年。
37. 朱佾蓁,「利用地電阻影像法計算水文地質參數:以屏東平原為例」,國立中央大學,碩士論文,2020年。
38. 吳秉昀,「地電阻影像法於海岸生物礁調查之研究—以桃園觀音區為例」,國立中央大學,碩士論文,2017年。
39. 林敬文與林偉雄,五萬分之一臺灣地質圖--三星圖幅,第十五號,行政院經濟部地質調查及礦業管理中心,1995年。
40. 林慶偉等,「106 年大規模崩塌多元多尺度綜合監測, 資料綜整分析與滑動機制研究: 以太平山蘭台地區為例 (III)-大規模崩塌多元多尺度綜合監測, 資料綜整分析與滑動機制研究: 以太平山蘭台地區為例 (III)」,科技部專題研究計畫,2017年。
41.夏國強,「蘭台地區坡地崩塌演化與破壞機制分析」,國立臺灣大學,碩士論文,2016年。
42. 許芳鳴,「以地電阻影像法探討地滑敏感區電阻率構造與環境因子之關係」,國立中央大學,碩士論文,2015年
43. 許家寅,「利用地電阻影像法推估降雨入滲範圍:以台中霧峰農地為例」,國立中央大學,碩士論文,2023年。
44. 陳均,「耦合水熱電模型優化降雨入滲模擬」,國立中央大學,碩士論文,2023年。
45. 曾長生,「宜蘭縣清水及土場區地質及地熱產狀」,台灣石油地質,第十五號,205~204頁,1978年。
46. 黃至用,「宜專一線公路蘭台苗圃地區地滑案之研究」,國立宜蘭大學,碩士論文,2011年。
47.行政院農業部農村發展及水土保持署:土石流及大規模崩塌防災資訊網,2024年,取自https://246.ardswc.gov.tw/.
48. 蔡武男,「電阻率變化與降雨間關係及其對於山崩的影響:以宜蘭太平山蘭台地區為例」, 國立中央大學,碩士論文,2021年。 |