博碩士論文 111226072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:3.133.126.245
姓名 馮麒(Qi Feng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 光聲訊號對皮下血紅蛋白濃度定量之研究
(Study on the quantification of subcutaneous hemoglobin concentration using photoacoustic signal)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-23以後開放)
摘要(中) 本論文啟發於對瘀傷年齡判定的相關研究,隨時間瘀傷內部物質會產生濃度上的變化,因此定量物質濃度在預測瘀傷年齡的相關研究中佔有相當重要的一部分。本研究目的為開發一套光聲系統,利用其對目標吸收特徵的選定與擁有提供深度資訊的特性,能夠對目標物質的濃度進行定量。為了模擬人體皮膚組織,實驗中製作了以吉利丁為基底的仿體,內部埋入毛細管與打入紅色色素 Ponceau 4R,模擬血管與血液,並利用 532 nm雷射作為激發光源,對 Ponceau 4R 進行激發,透過調整仿體內部物質與仿體厚度,量測
不同情況下光聲訊號強度隨色素體積百分濃度變化的趨勢,討論所架設的光聲系統在實驗上的限制與問題。
除此之外,經由反覆量測特定濃度範圍之色素,對訊號強度的變化進行線性擬合,並將擬合線段作為濃度定量之模型,隨後對隨機已知濃度作光聲訊號強度的測定,將結果代入模型中,得到濃度預測值,將其與實際濃度值進行比較並討論,為此架構在定量的功能上建立基礎,最後針對研究過程中遇到的問題制定系統未來開發上的目標。
摘要(英) This paper is inspired by research on the determination of the age of bruises. Over time, the concentration of substances inside bruises changes, making quantitative substance concentration an important part of predicting bruise age. The purpose of this study is to develop
a photoacoustic system, by selecting and possessing the absorption characteristics of the target, provides depth information and can quantify the concentration of the target substance.
To simulate human skin tissue, the experiment created gelatin-based phantoms embedded with capillaries tube and injected with red dye Ponceau 4R to simulate blood vessels and blood, respectively. A 532 nm laser was used as the excitation light source to excite the Ponceau 4R. By adjusting the substance inside the phantom and its thickness, the study measured the trend of photoacoustic signal intensity with changes in the volume percentage concentration of the dye under different conditions, discussing the limitations and issues of the constructed photoacoustic system in the experiment.
Furthermore, by repeatedly measuring the signal intensity variation of specific concentration ranges of the dye and performing linear fitting, a concentration quantification
model was established. Subsequently, the signal intensity of known random concentrations was measured using photoacoustics, and the results were plugged into the model to obtain concentration predictions. These predictions were compared with actual concentration values and discussed to establish the foundation for the quantitative function of this framework. Finally, goals for future development of the system were formulated based on the problems encountered during the research process.
關鍵字(中) ★ 光聲訊號
★ 血紅蛋白
★ 濃度
關鍵字(英) ★ photoacoustic
★ hemoglobin
★ concentration
論文目次 中文摘要.........................................................i
英文摘要.........................................................ii
誌謝..............................................................iii
目錄..............................................................iv
圖目錄...........................................................vii
表目錄..........................................................xi

中文摘要....................i
英文摘要....................ii
誌謝.......................iii
目錄.......................iv
圖目錄....................vii
表目錄....................xi

一、緒論
1-1 研究動機.................1
1-2 文獻回顧.................2
1-2-1 比色法(Colorimetry)相關研究.................2
1-2-2 漫反射光譜分析(DRS & HSI)相關研究.................3
1-2-3 脈衝光熱輻射量測相關研究(PPTR).................6
1-2-4 光聲系統.................7
1-2-5 光聲系統種類介紹.................8
1-3 論文架構.................16

二、實驗原理
2-1 光聲效應原理.................17
2-1-1 脈衝雷射與皮膚組織間之交互作用.................17
2-1-2 光致聲波原理講解.................18
2-1-3 一般光聲方程式.................19
2-1-4 一般光聲方程式求解.................20
2-1-5 光聲效應中之非線性現象.................21
2-1-6 OR-PAM光聲顯微鏡系統解析度.................26

三、研究方法
3-1 實驗系統架構介紹.................28
3-2 雷射控制人機操作介面.................30
3-2-1 脈衝寬度.................31
3-2-2 脈衝重複率(Pulse repetition rate).................33
3-3 LabVIEW訊號擷取與紀錄.................34
3-4 樣品製作.................35
3-4-1 模具製備.................36
3-4-2 Phantom製備.................37
3-4-3 血液模擬樣品濃度調配.................38
3-5 解析度量測.................41
3-5-1 橫向解析度.................41
3-5-2 軸向解析度.................42

四、實驗結果
4-1 系統量測獲取訊號之分析.................43
4-1-1 軸向解析度量測.................44
4-1-2 橫向解析度量測.................45
4-1-3 隨Phantom厚度變化橫向解析度之量測分析.................47
4-2 系統架構對光聲訊號激發之分析.................49
4-2-1 橫向掃描.................50
4-2-2 縱向掃描.................52
4-3 光聲訊號非線性量測分析.................53
4-3-1 吸收飽和相關非線性量測.................53
4-3-2 解析度相關非線性效應量測.................55
4-4 光聲訊號隨色素濃度變化分析.................56
4-4-1 不同種類樣品下光聲訊號隨色素濃度之變化.................56
4-4-2 不同厚度下光聲訊號隨色素濃度之變化.................58
4-5 造成訊號下降幅度壓縮因素之分析.................60
4-5-1 下降雷射能量.................61
4-5-2 偏離物鏡焦點.................62
4-5-3 偏離探頭焦點.................63
4-6 隨機濃度定量準確度分析.................64

五、結論
.................70

參考文獻
.................71
參考文獻 [1] E. Nuzzolese and G. Di Vella, "The development of a colorimetric scale as a visual aid
for the bruise age determination of bite marks and blunt trauma," (in eng), J Forensic
Odontostomatol, vol. 30, no. 2, pp. 1-6, Dec 1 2012.
[2] K. N. Scafide, D. J. Sheridan, L. A. Taylor, and M. J. Hayat, "Reliability of tristimulus
colourimetry in the assessment of cutaneous bruise colour," Injury, vol. 47, no. 6, pp. 1258-
1263, 2016/06/01/ 2016, doi: https://doi.org/10.1016/j.injury.2016.01.032.
[3] K. R. N. Scafide, D. J. Sheridan, J. Campbell, V. B. DeLeon, and M. J. Hayat,
"Evaluating change in bruise colorimetry and the effect of subject characteristics over time,"
(in English), Forensic Sci. Med. Pathol., Article vol. 9, no. 3, pp. 367-376, Sep 2013, doi:
10.1007/s12024-013-9452-4.
[4] D. Thavarajah, P. Vanezis, and D. Perrett, "Assessment of bruise age on dark-skinned
individuals using tristimulus colorimetry," Medicine, Science and the Law, vol. 52, no. 1, pp.
6-11, 2012, doi: 10.1258/msl.2011.011038.
[5] S. Mimasaka, M. Ohtani, N. Kuroda, and S. Tsunenari, "Spectrophotometric evaluation
of the age of bruises in children: measuring changes in bruise color as an indicator of child
physical abuse," (in eng), Tohoku J Exp Med, vol. 220, no. 2, pp. 171-5, Feb 2010, doi:
10.1620/tjem.220.171.
[6] O. Kim, J. McMurdy, C. Lines, S. Duffy, G. Crawford, and M. Alber, "Reflectance
spectrometry of normal and bruised human skins: experiments and modeling," Physiological
Measurement, vol. 33, no. 2, p. 159, 2012/01/19 2012, doi: 10.1088/0967-3334/33/2/159.
[7] J. McMurdy, S. Duffy, and G. Crawford, Monitoring bruise age using visible diffuse
reflectance spectroscopy (SPIE BiOS). SPIE, 2007.
[8] L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, "A novel approach to age determination of traumatic injuries by reflectance spectroscopy," (in English), Lasers
Surg. Med., Article vol. 38, no. 4, pp. 277-289, Apr 2006, doi: 10.1002/lsm.20301.
[9] B. Stam, M. van Gemert, T. van Leeuwen, A. Teeuw, A. Van der Wal, and M. C. G.
Aalders, "Can color inhomogeneity of bruises be used to establish their age?," Journal of
biophotonics, vol. 4, pp. 759-67, 10/01 2011, doi: 10.1002/jbio.201100021.
[10] A. Marin, R. Hren, and M. Milanic, "Pulsed Photothermal Radiometric Depth Profiling
of Bruises by 532 nm and 1064 nm Lasers," Sensors, vol. 23, no. 4, Feb 2023, Art no. 2196,
doi: 10.3390/s23042196.
[11] E. Hysi, M. J. Moore, E. M. Strohm, and M. C. Kolios, "A tutorial in photoacoustic
microscopy and tomography signal processing methods," (in English), J. Appl. Phys., Article
vol. 129, no. 14, p. 22, Apr 2021, Art no. 141102, doi: 10.1063/5.0040783.
[12] M. H. Xu and L. H. V. Wang, "Photoacoustic imaging in biomedicine," (in English), Rev.
Sci. Instrum., Review vol. 77, no. 4, p. 22, Apr 2006, Art no. 041101, doi: 10.1063/1.2195024.
[13] A. Fatima et al., "Review of cost reduction methods in photoacoustic computed
tomography," Photoacoustics, vol. 15, p. 100137, 2019/09/01/ 2019, doi:
https://doi.org/10.1016/j.pacs.2019.100137.
[14] L. V. Wang and J. Yao, "A practical guide to photoacoustic tomography in the life
sciences," (in eng), Nat Methods, vol. 13, no. 8, pp. 627-38, Jul 28 2016, doi:
10.1038/nmeth.3925.
[15] L. V. Wang and S. Hu, "Photoacoustic tomography: in vivo imaging from organelles to
organs," (in eng), Science, vol. 335, no. 6075, pp. 1458-62, Mar 23 2012, doi:
10.1126/science.1216210.
[16] Y. Sun, E. Sobel, and H. Jiang, "Noninvasive imaging of hemoglobin concentration and
oxygen saturation for detection of osteoarthritis in the finger joints using multispectral threedimensional quantitative photoacoustic tomography," Journal of Optics, vol. 15, no. 5, p. 055302, 2013/04/29 2013, doi:10.1088/2040-8978/15/5/055302
[17] X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, "Noninvasive imaging of
hemoglobin concentration and oxygenation in the rat brain using high-resolution
photoacoustic tomography," Journal of biomedical optics, vol. 11, no. 2, pp. 024015-024015,
2006, doi: 10.1117/1.2192804.
[18] W. Y. Jeong et al., "Recent Trends in Photoacoustic Imaging Techniques for 2D
Nanomaterial-Based Phototherapy," (in eng), Biomedicines, vol. 9, no. 1, Jan 15 2021, doi:
10.3390/biomedicines9010080.
[19] J. Xia, J. Yao, and L. V. Wang, "Photoacoustic tomography: principles and advances," (in
eng), Electromagn Waves (Camb), vol. 147, pp. 1-22, 2014, doi: 10.2528/pier14032303.
[20] W. Xing, L. Wang, K. Maslov, and L. V. Wang, "Integrated optical- and acousticresolution photoacoustic microscopy based on an optical fiber bundle," (in eng), Opt Lett, vol.
38, no. 1, pp. 52-54, Jan 1 2013, doi: 10.1364/ol.38.000052.
[21] Y. Zhou, C. Zhang, D.-K. Yao, and L. V. Wang, "Photoacoustic microscopy of bilirubin
in tissue phantoms," Journal of biomedical optics, vol. 17, no. 12, pp. 126019-126019,
2012/12/13 2012, doi: 10.1117/1.jbo.17.12.126019.
[22] X. Shu, H. Li, B. Dong, C. Sun, and H. F. Zhang, "Quantifying melanin concentration in
retinal pigment epithelium using broadband photoacoustic microscopy," Biomed. Opt.
Express, vol. 8, no. 6, pp. 2851-2865, 2017/06/01 2017, doi: 10.1364/BOE.8.002851.
[23] Y. Wang, Q. Shi, Y. Shen, Y. Liu, and F. Gao, Passive Photoacoustic Effect. 2022.
[24] A. Welch, "The thermal response of laser irradiated tissue," IEEE Journal of Quantum
Electronics, vol. 20, no. 12, pp. 1471-1481, 1984, doi: 10.1109/JQE.1984.1072339.
[25] , "Photoacoustic Tomography," in Biomedical Optics, 2009, pp. 283-321.
[26] A. Marion, J. Boutet, M. Debourdeau, J. M. Dinten, and D. Vray, "A quantitative study to
design an experimental setup for photoacoustic imaging," in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 30 Aug.-3 Sept. 2011
2011, pp. 7211-7214, doi: 10.1109/IEMBS.2011.6091822.
[27] Y. Zhou, J. Yao, and L. V. Wang, "Tutorial on photoacoustic tomography," (in eng), J
Biomed Opt, vol. 21, no. 6, p. 61007, Jun 2016, doi: 10.1117/1.Jbo.21.6.061007.
[28] F. A. McDonald and G. C. Wetsel, Jr., "Generalized theory of the photoacoustic effect,"
Journal of Applied Physics, vol. 49, no. 4, pp. 2313-2322, 1978, doi: 10.1063/1.325116.
[29] R. Gao, Z. Xu, Y. Ren, L. Song, and C. Liu, "Nonlinear mechanisms in photoacoustics—
Powerful tools in photoacoustic imaging," Photoacoustics, vol. 22, p. 100243, 2021/06/01/
2021, doi: https://doi.org/10.1016/j.pacs.2021.100243.
[30] A. E. Siegman, "Lasers university science books," Mill Valley, CA, vol. 37, no. 208, p.
169, 1986.
[31] A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, "Single-wavelength functional
photoacoustic microscopy in biological tissue," (in eng), Opt Lett, vol. 36, no. 5, pp. 769-71,
Mar 1 2011, doi: 10.1364/ol.36.000769.
[32] I. Larina, K. Larin, and R. Esenaliev, "Real-time optoacoustic monitoring of temperature
in tissues," J. Phys. D: Appl. Phys, vol. 38, pp. 2633-2639, 08/07 2005, doi: 10.1088/0022-
3727/38/15/015.
[33] L. Wang, C. Zhang, and L. V. Wang, "Grueneisen relaxation photoacoustic microscopy,"
(in eng), Phys Rev Lett, vol. 113, no. 17, p. 174301, Oct 24 2014, doi:
10.1103/PhysRevLett.113.174301.
[34] C. Liu, Y. Liang, and L. Wang, "Optical-resolution photoacoustic microscopy of oxygen
saturation with nonlinear compensation," Biomed. Opt. Express, vol. 10, no. 6, pp. 3061-3069,
2019/06/01 2019, doi: 10.1364/BOE.10.003061.
[35] J. Wang et al., "Saturation effect in functional photoacoustic imaging," (in eng), J
Biomed Opt, vol. 15, no. 2, p. 021317, Mar-Apr 2010, doi: 10.1117/1.3333549.
[36] C. Zhang, K. Maslov, J. Yao, and L. V. Wang, "In vivo photoacoustic microscopy with
7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer," (in eng), J
Biomed Opt, vol. 17, no. 11, p. 116016, Nov 2012, doi: 10.1117/1.Jbo.17.11.116016.
[37] S. Jeon, J. Kim, D. Lee, J. W. Baik, and C. Kim, "Review on practical photoacoustic
microscopy," (in eng), Photoacoustics, vol. 15, p. 100141, Sep 2019, doi:
10.1016/j.pacs.2019.100141.
[38] F. Gao et al., "Single laser pulse generates dual photoacoustic signals for differential
contrast photoacoustic imaging," Scientific Reports, vol. 7, p. 626, 04/04 2017, doi:
10.1038/s41598-017-00725-4.
[39] 王奕辰 and Y.-C. Wang, "光聲壓縮感知顯微影像系統改善與以加熱樣品提升光聲訊
號強度之研究," 國立中央大學. [Online]. Available:
http://ir.lib.ncu.edu.tw/handle/987654321/90734
[40] S. Y. Tzeng et al., "Skin collagen can be accurately quantified through noninvasive
optical method: Validation on a swine study," (in eng), Skin Res Technol, vol. 24, no. 1, pp.
59-64, Feb 2018, doi: 10.1111/srt.12390.
[41] F. Vasefi et al., "Quantifying the optical properties and chromophore concentrations of
turbid media using polarization sensitive hyperspectral imaging: Optical phantom studies,"
Progress in Biomedical Optics and Imaging - Proceedings of SPIE, pp. 85870Z-85870Z,
02/26 2013, doi: 10.1117/12.2005371.
[42] I. Nishidate et al., "Noninvasive imaging of human skin hemodynamics using a digital
red-green-blue camera," Journal of biomedical optics, vol. 16, p. 086012, 08/01 2011, doi:
10.1117/1.3613929.
[43] C. Liu, Y. Liang, and L. Wang, "Optical-resolution photoacoustic microscopy of oxygen
saturation with nonlinear compensation," Biomedical Optics Express, vol. 10, p. 3061, 06/01
2019, doi: 10.1364/BOE.10.003061.
[44] R. Shintate et al., "Development of optical resolution photoacoustic microscopy with
sub-micron lateral resolution for visualization of cells and their structures," Japanese Journal
of Applied Physics, vol. 59, 03/27 2020, doi: 10.35848/1347-4065/ab840e.
[45] X. Li et al., "Ultraviolet photoacoustic microscopy with tissue clearing for high-contrast
histological imaging," Photoacoustics, vol. 25, p. 100313, 2022/03/01/ 2022, doi:
https://doi.org/10.1016/j.pacs.2021.100313.
[46] S. Chandramoorthi, J. J. M. Riksen, A. V. Nikolaev, A. F. W. Van Der Steen, and G. Van
Soest, "Wideband photoacoustic imaging in vivo with complementary frequency conventional
ultrasound transducers," (in English), Frontiers in Physics, Original Research vol. 10, 2022-
October-06 2022, doi: 10.3389/fphy.2022.954537.
[47] L. Fu and J. Jokerst, "Interleave-sampled photoacoustic imaging: a doubled and
equivalent sampling rate for high-frequency imaging," (in eng), Opt Lett, vol. 47, no. 14, pp.
3503-3506, Jul 15 2022, doi: 10.1364/ol.464293.
指導教授 陳思妤 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明