參考文獻 |
[1] E. Nuzzolese and G. Di Vella, "The development of a colorimetric scale as a visual aid
for the bruise age determination of bite marks and blunt trauma," (in eng), J Forensic
Odontostomatol, vol. 30, no. 2, pp. 1-6, Dec 1 2012.
[2] K. N. Scafide, D. J. Sheridan, L. A. Taylor, and M. J. Hayat, "Reliability of tristimulus
colourimetry in the assessment of cutaneous bruise colour," Injury, vol. 47, no. 6, pp. 1258-
1263, 2016/06/01/ 2016, doi: https://doi.org/10.1016/j.injury.2016.01.032.
[3] K. R. N. Scafide, D. J. Sheridan, J. Campbell, V. B. DeLeon, and M. J. Hayat,
"Evaluating change in bruise colorimetry and the effect of subject characteristics over time,"
(in English), Forensic Sci. Med. Pathol., Article vol. 9, no. 3, pp. 367-376, Sep 2013, doi:
10.1007/s12024-013-9452-4.
[4] D. Thavarajah, P. Vanezis, and D. Perrett, "Assessment of bruise age on dark-skinned
individuals using tristimulus colorimetry," Medicine, Science and the Law, vol. 52, no. 1, pp.
6-11, 2012, doi: 10.1258/msl.2011.011038.
[5] S. Mimasaka, M. Ohtani, N. Kuroda, and S. Tsunenari, "Spectrophotometric evaluation
of the age of bruises in children: measuring changes in bruise color as an indicator of child
physical abuse," (in eng), Tohoku J Exp Med, vol. 220, no. 2, pp. 171-5, Feb 2010, doi:
10.1620/tjem.220.171.
[6] O. Kim, J. McMurdy, C. Lines, S. Duffy, G. Crawford, and M. Alber, "Reflectance
spectrometry of normal and bruised human skins: experiments and modeling," Physiological
Measurement, vol. 33, no. 2, p. 159, 2012/01/19 2012, doi: 10.1088/0967-3334/33/2/159.
[7] J. McMurdy, S. Duffy, and G. Crawford, Monitoring bruise age using visible diffuse
reflectance spectroscopy (SPIE BiOS). SPIE, 2007.
[8] L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, "A novel approach to age determination of traumatic injuries by reflectance spectroscopy," (in English), Lasers
Surg. Med., Article vol. 38, no. 4, pp. 277-289, Apr 2006, doi: 10.1002/lsm.20301.
[9] B. Stam, M. van Gemert, T. van Leeuwen, A. Teeuw, A. Van der Wal, and M. C. G.
Aalders, "Can color inhomogeneity of bruises be used to establish their age?," Journal of
biophotonics, vol. 4, pp. 759-67, 10/01 2011, doi: 10.1002/jbio.201100021.
[10] A. Marin, R. Hren, and M. Milanic, "Pulsed Photothermal Radiometric Depth Profiling
of Bruises by 532 nm and 1064 nm Lasers," Sensors, vol. 23, no. 4, Feb 2023, Art no. 2196,
doi: 10.3390/s23042196.
[11] E. Hysi, M. J. Moore, E. M. Strohm, and M. C. Kolios, "A tutorial in photoacoustic
microscopy and tomography signal processing methods," (in English), J. Appl. Phys., Article
vol. 129, no. 14, p. 22, Apr 2021, Art no. 141102, doi: 10.1063/5.0040783.
[12] M. H. Xu and L. H. V. Wang, "Photoacoustic imaging in biomedicine," (in English), Rev.
Sci. Instrum., Review vol. 77, no. 4, p. 22, Apr 2006, Art no. 041101, doi: 10.1063/1.2195024.
[13] A. Fatima et al., "Review of cost reduction methods in photoacoustic computed
tomography," Photoacoustics, vol. 15, p. 100137, 2019/09/01/ 2019, doi:
https://doi.org/10.1016/j.pacs.2019.100137.
[14] L. V. Wang and J. Yao, "A practical guide to photoacoustic tomography in the life
sciences," (in eng), Nat Methods, vol. 13, no. 8, pp. 627-38, Jul 28 2016, doi:
10.1038/nmeth.3925.
[15] L. V. Wang and S. Hu, "Photoacoustic tomography: in vivo imaging from organelles to
organs," (in eng), Science, vol. 335, no. 6075, pp. 1458-62, Mar 23 2012, doi:
10.1126/science.1216210.
[16] Y. Sun, E. Sobel, and H. Jiang, "Noninvasive imaging of hemoglobin concentration and
oxygen saturation for detection of osteoarthritis in the finger joints using multispectral threedimensional quantitative photoacoustic tomography," Journal of Optics, vol. 15, no. 5, p. 055302, 2013/04/29 2013, doi:10.1088/2040-8978/15/5/055302
[17] X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, "Noninvasive imaging of
hemoglobin concentration and oxygenation in the rat brain using high-resolution
photoacoustic tomography," Journal of biomedical optics, vol. 11, no. 2, pp. 024015-024015,
2006, doi: 10.1117/1.2192804.
[18] W. Y. Jeong et al., "Recent Trends in Photoacoustic Imaging Techniques for 2D
Nanomaterial-Based Phototherapy," (in eng), Biomedicines, vol. 9, no. 1, Jan 15 2021, doi:
10.3390/biomedicines9010080.
[19] J. Xia, J. Yao, and L. V. Wang, "Photoacoustic tomography: principles and advances," (in
eng), Electromagn Waves (Camb), vol. 147, pp. 1-22, 2014, doi: 10.2528/pier14032303.
[20] W. Xing, L. Wang, K. Maslov, and L. V. Wang, "Integrated optical- and acousticresolution photoacoustic microscopy based on an optical fiber bundle," (in eng), Opt Lett, vol.
38, no. 1, pp. 52-54, Jan 1 2013, doi: 10.1364/ol.38.000052.
[21] Y. Zhou, C. Zhang, D.-K. Yao, and L. V. Wang, "Photoacoustic microscopy of bilirubin
in tissue phantoms," Journal of biomedical optics, vol. 17, no. 12, pp. 126019-126019,
2012/12/13 2012, doi: 10.1117/1.jbo.17.12.126019.
[22] X. Shu, H. Li, B. Dong, C. Sun, and H. F. Zhang, "Quantifying melanin concentration in
retinal pigment epithelium using broadband photoacoustic microscopy," Biomed. Opt.
Express, vol. 8, no. 6, pp. 2851-2865, 2017/06/01 2017, doi: 10.1364/BOE.8.002851.
[23] Y. Wang, Q. Shi, Y. Shen, Y. Liu, and F. Gao, Passive Photoacoustic Effect. 2022.
[24] A. Welch, "The thermal response of laser irradiated tissue," IEEE Journal of Quantum
Electronics, vol. 20, no. 12, pp. 1471-1481, 1984, doi: 10.1109/JQE.1984.1072339.
[25] , "Photoacoustic Tomography," in Biomedical Optics, 2009, pp. 283-321.
[26] A. Marion, J. Boutet, M. Debourdeau, J. M. Dinten, and D. Vray, "A quantitative study to
design an experimental setup for photoacoustic imaging," in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 30 Aug.-3 Sept. 2011
2011, pp. 7211-7214, doi: 10.1109/IEMBS.2011.6091822.
[27] Y. Zhou, J. Yao, and L. V. Wang, "Tutorial on photoacoustic tomography," (in eng), J
Biomed Opt, vol. 21, no. 6, p. 61007, Jun 2016, doi: 10.1117/1.Jbo.21.6.061007.
[28] F. A. McDonald and G. C. Wetsel, Jr., "Generalized theory of the photoacoustic effect,"
Journal of Applied Physics, vol. 49, no. 4, pp. 2313-2322, 1978, doi: 10.1063/1.325116.
[29] R. Gao, Z. Xu, Y. Ren, L. Song, and C. Liu, "Nonlinear mechanisms in photoacoustics—
Powerful tools in photoacoustic imaging," Photoacoustics, vol. 22, p. 100243, 2021/06/01/
2021, doi: https://doi.org/10.1016/j.pacs.2021.100243.
[30] A. E. Siegman, "Lasers university science books," Mill Valley, CA, vol. 37, no. 208, p.
169, 1986.
[31] A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, "Single-wavelength functional
photoacoustic microscopy in biological tissue," (in eng), Opt Lett, vol. 36, no. 5, pp. 769-71,
Mar 1 2011, doi: 10.1364/ol.36.000769.
[32] I. Larina, K. Larin, and R. Esenaliev, "Real-time optoacoustic monitoring of temperature
in tissues," J. Phys. D: Appl. Phys, vol. 38, pp. 2633-2639, 08/07 2005, doi: 10.1088/0022-
3727/38/15/015.
[33] L. Wang, C. Zhang, and L. V. Wang, "Grueneisen relaxation photoacoustic microscopy,"
(in eng), Phys Rev Lett, vol. 113, no. 17, p. 174301, Oct 24 2014, doi:
10.1103/PhysRevLett.113.174301.
[34] C. Liu, Y. Liang, and L. Wang, "Optical-resolution photoacoustic microscopy of oxygen
saturation with nonlinear compensation," Biomed. Opt. Express, vol. 10, no. 6, pp. 3061-3069,
2019/06/01 2019, doi: 10.1364/BOE.10.003061.
[35] J. Wang et al., "Saturation effect in functional photoacoustic imaging," (in eng), J
Biomed Opt, vol. 15, no. 2, p. 021317, Mar-Apr 2010, doi: 10.1117/1.3333549.
[36] C. Zhang, K. Maslov, J. Yao, and L. V. Wang, "In vivo photoacoustic microscopy with
7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer," (in eng), J
Biomed Opt, vol. 17, no. 11, p. 116016, Nov 2012, doi: 10.1117/1.Jbo.17.11.116016.
[37] S. Jeon, J. Kim, D. Lee, J. W. Baik, and C. Kim, "Review on practical photoacoustic
microscopy," (in eng), Photoacoustics, vol. 15, p. 100141, Sep 2019, doi:
10.1016/j.pacs.2019.100141.
[38] F. Gao et al., "Single laser pulse generates dual photoacoustic signals for differential
contrast photoacoustic imaging," Scientific Reports, vol. 7, p. 626, 04/04 2017, doi:
10.1038/s41598-017-00725-4.
[39] 王奕辰 and Y.-C. Wang, "光聲壓縮感知顯微影像系統改善與以加熱樣品提升光聲訊
號強度之研究," 國立中央大學. [Online]. Available:
http://ir.lib.ncu.edu.tw/handle/987654321/90734
[40] S. Y. Tzeng et al., "Skin collagen can be accurately quantified through noninvasive
optical method: Validation on a swine study," (in eng), Skin Res Technol, vol. 24, no. 1, pp.
59-64, Feb 2018, doi: 10.1111/srt.12390.
[41] F. Vasefi et al., "Quantifying the optical properties and chromophore concentrations of
turbid media using polarization sensitive hyperspectral imaging: Optical phantom studies,"
Progress in Biomedical Optics and Imaging - Proceedings of SPIE, pp. 85870Z-85870Z,
02/26 2013, doi: 10.1117/12.2005371.
[42] I. Nishidate et al., "Noninvasive imaging of human skin hemodynamics using a digital
red-green-blue camera," Journal of biomedical optics, vol. 16, p. 086012, 08/01 2011, doi:
10.1117/1.3613929.
[43] C. Liu, Y. Liang, and L. Wang, "Optical-resolution photoacoustic microscopy of oxygen
saturation with nonlinear compensation," Biomedical Optics Express, vol. 10, p. 3061, 06/01
2019, doi: 10.1364/BOE.10.003061.
[44] R. Shintate et al., "Development of optical resolution photoacoustic microscopy with
sub-micron lateral resolution for visualization of cells and their structures," Japanese Journal
of Applied Physics, vol. 59, 03/27 2020, doi: 10.35848/1347-4065/ab840e.
[45] X. Li et al., "Ultraviolet photoacoustic microscopy with tissue clearing for high-contrast
histological imaging," Photoacoustics, vol. 25, p. 100313, 2022/03/01/ 2022, doi:
https://doi.org/10.1016/j.pacs.2021.100313.
[46] S. Chandramoorthi, J. J. M. Riksen, A. V. Nikolaev, A. F. W. Van Der Steen, and G. Van
Soest, "Wideband photoacoustic imaging in vivo with complementary frequency conventional
ultrasound transducers," (in English), Frontiers in Physics, Original Research vol. 10, 2022-
October-06 2022, doi: 10.3389/fphy.2022.954537.
[47] L. Fu and J. Jokerst, "Interleave-sampled photoacoustic imaging: a doubled and
equivalent sampling rate for high-frequency imaging," (in eng), Opt Lett, vol. 47, no. 14, pp.
3503-3506, Jul 15 2022, doi: 10.1364/ol.464293. |