博碩士論文 111622015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:18.223.125.236
姓名 陳穎龍(Yin-Long Chen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 運用電阻率成像和透地雷達在極區調查永凍土:以挪威斯瓦爾巴群島為例
相關論文
★ 宜蘭三星清水地區現地應力與斷層再活動分析★ 地面-井下地電阻影像法之空間解析度與成像能力分析
★ 運用地電阻影像法估算非受壓含水層之水頭及比出水率: 位於台灣中部,台中-南投地盆地沿烏溪河之研究案例★ 應用二維地電阻法推估名竹盆地淺層含水層水位變化及比出水率
★ 運用二維地電阻影像法推估屏東平原扇頂地區非拘限含水層在乾濕季之地下水位變化及比出水率★ 辨識大地地磁法現地施測之噪訊:以台灣花蓮地區為案例
★ 運用大地電磁法探討北部屏東平原地下構造★ 應用二維地電阻法推估蘭陽平原扇頂地區淺層地下水位面於乾溼季的變化量及比出水率
★ 地電阻剖面影像法之不確定性評估★ 時間域電磁波方法在雲林地區濁水溪沖積扇中下游水文地質結構測勘之應用
★ 運用機器學習進行地球物理數據分析:地電阻與透地雷達方法中的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 北極圈內的斯匹次卑爾根島(Spitsbergen)隸屬於斯瓦爾巴群島(Svalbard),其地理位置坐落在極圈內。近年來,氣候變遷導致極圈氣候條件大幅改變,進而影響地表下永凍層(Permafrost)和活動層(Active layer)的分布。為了監測和分析永凍層及活動層的變化,我們分別於2022年和2023年夏季在斯匹次卑爾根島西北方卡菲耶拉(Kaffiørya)平原海岸線附近進行地球物理探勘,使用了二維地電阻影像法(ERI)和透地雷達(GPR)。我們的研究分為兩條測線施測。一條從波蘭哥白尼大學極地研究站向海岸線延伸140公尺,為垂直海岸線的長測線,該測線在2022年和2023年均進行了重複測量。2023年新增了一條與長測線相交的40公尺短測線,以及極地研究站旁苔原上的五條平行測線。靠近海岸的短測線經過極地研究站的氣象測站,目的是了解永凍層在不同方向上的分布情況。苔原上的五條平行測線間隔為1公尺,長度為40公尺。除了進行二維剖面外,我們還建立了此區域的三維模型,以更清楚了解電阻率的趨勢。
本研究中,地電阻法使用溫奈陣列(Wenner Array),電極間距為1公尺,以獲取較佳的解析度成像。透地雷達則使用頻率100MHz的天線。研究結果顯示,2023年長測線的地電阻剖面相比2022年,明顯低電阻率區域增多,高電阻率區域減少,在氣象站資料中觀察到,2023年地表溫度與含水量皆為上升趨勢,可推測為氣溫上升造成降雨事件更為頻繁,造成原先高電阻區域的未飽和沉積物含水量上升,降低了電阻率。在透地雷達剖面中也可見,測線前半段訊號衰減迅速,因為含水量高導致訊號衰減快,後半段則可見強烈訊號反射,這是由於訊號反射自活動層與永凍層的介質差異。此外,短測線和苔原上的地電阻剖面顯示出高電阻率與低電阻率的明顯邊界,顯示活動層的深度大約在深度1.3公尺之間,而在深度4~5公尺處有一中高阻區域,推測為永凍層所在位置。而苔原的的結果顯示活動層深度為1.4公尺,且在深度4.5公尺處也同樣發現有此中高阻區域。這些結果表明,地電阻以及透地雷達方法可以讓我們對活動層跟永凍層分布有更多的資訊跟認知。
摘要(英) Spitsbergen Island, part of the Svalbard archipelago, is located within the Arctic Circle. In recent years, climate change has significantly altered the climatic conditions in the polar region, affecting the distribution of permafrost and the active layer. To monitor and analyze the changes in the permafrost and active layer, we conducted geophysical surveys near the coastal plains of Kaffiørya in northwestern Spitsbergen during the summers of 2022 and 2023, using two-dimensional Electrical Resistivity Imaging (ERI) and Ground Penetrating Radar (GPR).
Our study involved two survey lines. One was a long line extending 140 meters from the Polish Polar Station towards the coastline, perpendicular to the shore, and was measured in both 2022 and 2023. In 2023, we added a 40-meter short line intersecting the long line, as well as five parallel survey lines on the tundra adjacent to the Polar Station. The short line near the coast passed through the meteorological station of the Polar Station to understand the distribution of permafrost in different directions. The five parallel survey lines on the tundra were spaced 1 meter apart and were each 40 meters long. In addition to conducting two-dimensional profiling, we also developed a three-dimensional model of this area to gain a clearer understanding of the resistivity trends.
In this study, the electrical resistivity method employed a Wenner array with an electrode spacing of 1 meter to obtain better resolution imaging. The Ground Penetrating Radar used a 100 MHz antenna. The results of the study showed that, compared to 2022, the resistivity profile of the long line in 2023 displayed more low-resistivity areas and fewer high-resistivity areas. Meteorological data indicated an increase in both surface temperature and moisture content in 2023. It can be inferred that rising temperatures have caused more frequent rainfall events, turning previously high-resistivity unsaturated sediments into saturated sediments, thereby lowering resistivity. In the GPR profile, the strong signal reflection indicates the contrast between the active layer and the permafrost.
Additionally, the resistivity profiles of the short line and the tundra lines showed a clear boundary between high and low resistivity, indicating that the depth of the active layer is approximately 1.3 meters, with a moderately high resistivity zone at a depth of 4-5 meters, likely representing the permafrost. These results demonstrate that electrical resistivity and Ground Penetrating Radar methods provide valuable information and insights into the distribution of the active layer and permafrost.
關鍵字(中) ★ 二維地電阻影像法
★ 透地雷達
★ 永凍層
★ 斯匹次卑爾根島
★ 卡菲耶拉平原
關鍵字(英)
論文目次 摘要 iv
Abstract v
致謝 vii
目錄 viii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 前人文獻回顧 2
第二章 研究區域 5
第三章 研究方法 13
3.1 地電阻法 13
3.1.1 地電阻法基本原理 13
3.1.2 電極排列方式 15
3.1.3 地電阻測量儀器 17
3.2 地電阻資料處理 18
3.3 透地雷達 19
3.3.1 透地雷達基本原理 20
3.3.2 透地雷達儀器 24
3.4 透地雷達資料處理 25
第四章 研究結果 28
4.1 Kaffiøyra海灘地電阻量測結果 28
4.2 Kaffiøyra苔原地電阻量測結果 34
4.3 Kaffiøyra海灘透地雷達結果 38
4.4 Kaffiøyra苔原透地雷達結果 41
第五章 討論 44
5.1 2022年與2023年氣象資料比較 44
5.2 運用Archie’s Law推估土壤含水量 49
5.3 ERT與GPR結果比較 52
第六章 結論 62
參考文獻 64
參考文獻 Andrzej ARAŹNY, R. P. a. M. K. (2016). Ground temperature changes on the Kaffiøyra Plain (Spitsbergen) in the summer seasons, 1975–2014. https://doi.org/10.1515/popore−2016−0004
Archie, G. E. (1942). The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the AIME, 146(01), 54-62. https://doi.org/10.2118/942054-g
Benedetto, A., Tosti, F., Ciampoli, L. B., & D′Amico, F. (2016). GPR Applications Across Engineering and Geosciences Disciplines in Italy: A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7), 2952-2965. https://doi.org/10.1109/jstars.2016.2554106
Buckel, J., Mudler, J., Gardeweg, R., Hauck, C., Hilbich, C., Frauenfelder, R., Kneisel, C., Buchelt, S., Blöthe, J. H., Hördt, A., & Bücker, M. (2023). Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements. The Cryosphere, 17(7), 2919-2940. https://doi.org/10.5194/tc-17-2919-2023
Campbell, S., Affleck, R. T., & Sinclair, S. (2018). Ground-penetrating radar studies of permafrost, periglacial, and near-surface geology at McMurdo Station, Antarctica. Cold Regions Science and Technology, 148, 38-49. https://doi.org/10.1016/j.coldregions.2017.12.008
Chang, P.-Y., Puntu, J. M., Lin, D.-J., Yao, H.-J., Chang, L.-C., Chen, K.-H., Lu, W.-J., Lai, T.-H., & Doyoro, Y. G. (2022). Using Time-Lapse Resistivity Imaging Methods to Quantitatively Evaluate the Potential of Groundwater Reservoirs. Water, 14(3), 420. https://www.mdpi.com/2073-4441/14/3/420
Dobinski, W. (2011). Permafrost. Earth-Science Reviews, 108(3-4), 158-169. https://doi.org/10.1016/j.earscirev.2011.06.007
Farzamian, M., Vieira, G., Monteiro Santos, F. A., Yaghoobi Tabar, B., Hauck, C., Paz, M. C., Bernardo, I., Ramos, M., & de Pablo, M. A. (2020). Detailed detection of active layer freeze–thaw dynamics using quasi-continuous electrical resistivity tomography (Deception Island, Antarctica). The Cryosphere, 14(3), 1105-1120. https://doi.org/10.5194/tc-14-1105-2020
Karušs, J., Lamsters, K., Sobota, I., Ješkins, J., Džeriņš, P., & Hodson, A. (2021). Drainage system and thermal structure of a High Arctic polythermal glacier: Waldemarbreen, western Svalbard. Journal of Glaciology, 68(269), 591-604. https://doi.org/10.1017/jog.2021.125
Kasprzak, M., Strzelecki, M. C., Traczyk, A., Kondracka, M., Lim, M., & Migała, K. (2017). On the potential for a bottom active layer below coastal permafrost: the impact of seawater on permafrost degradation imaged by electrical resistivity tomography (Hornsund, SW Spitsbergen). Geomorphology, 293, 347-359. https://doi.org/10.1016/j.geomorph.2016.06.013
Kejna, M., & Sobota, I. (2019). Meteorological conditions on Kaffiøyra (NW Spitsbergen) in 2013–2017 and their connection with atmospheric circulation and sea ice extent. Polish Polar Research, 175-204. https://doi.org/10.24425/ppr.2019.129670
Keller, G. V., & Frischknecht, F. C. (1966). Electrical methods in geophysical prospecting.
Lin, D.-J., Chang, P.-Y., Puntu, J. M., Doyoro, Y. G., Amania, H. H., & Chang, L.-C. (2023). Estimating the Specific Yield and Groundwater Level of an Unconfined Aquifer Using Time-Lapse Electrical Resistivity Imaging in the Pingtung Plain, Taiwan. Water, 15(6), 1184. https://www.mdpi.com/2073-4441/15/6/1184
M.Reynold, J. (2011). An Introduction to Applied and Environmental Geophysics. John Wiley & Sons, Ltd.
Przybylak, R., Kejna, M., & Araźny, A. (2011). Air Temperature and Precipitation Changes in the Kaffiøyra Region (NW Spitsbergen) from 1975 to 2010. Papers on Global Change IGBP, 18(1), 7-22. https://doi.org/10.2478/v10190-010-0001-10
Sobota, I., Dziembowski, M., Grajewski, T., Weckwerth, P., Nowak, M., & Greń, K. (2016). Short-term changes in thermal conditions and active layer thickness in the tundra of the Kaffiøyra region, NW Spitsbergen. Bulletin of Geography. Physical Geography Series, 11(1), 43-53. https://doi.org/10.1515/bgeo-2016-0014
Sobota, I., & Nowak, M. (2016). Changes in the dynamics and thermal regime of the permafrost and active layer of the high arctic coastal area in north‐west spitsbergen, svalbard. Geografiska Annaler: Series A, Physical Geography, 96(2), 227-240. https://doi.org/10.1111/geoa.12045
Sobota, I., Nowak, M., & Weckwerth, P. (2016). Long-term changes of glaciers in north-western Spitsbergen. Global and Planetary Change, 144, 182-197. https://doi.org/10.1016/j.gloplacha.2016.07.006
Sobota, I., Weckwerth, P., Grajewski, T., Dziembowski, M., Greń, K., & Nowak, M. (2018). Short-term changes in thickness and temperature of the active layer in summer in the Kaffiøyra region, NW Spitsbergen, Svalbard. Catena, 160, 141-153. https://doi.org/10.1016/j.catena.2017.09.014
Utsi, E. C. (2017). Ground Penetrating Radar Theory and Practice. In Ground Penetrating Radar (pp. i-iii). https://doi.org/10.1016/b978-0-08-102216-0.00016-3
Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898.
Weckwerth, P., Greń, K., & Sobota, I. (2019). Controls on downstream variation in surficial sediment size of an outwash braidplain developed under high Arctic conditions (Kaffiøyra, Svalbard). Sedimentary Geology, 387, 75-86. https://doi.org/10.1016/j.sedgeo.2019.03.019
指導教授 張竝瑜(Ping-Yu Chang) 審核日期 2024-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明