參考文獻 |
[1] X. Huang, C. Liu, and P. Zhou, "2D semiconductors for specific electronic applications: from device to system," npj 2D Materials and Applications, vol. 6, no. 1, 2022, doi: 10.1038/s41699-022-00327-3.
[2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat Nanotechnol, vol. 6, no. 3, pp. 147-50, Mar 2011, doi: 10.1038/nnano.2010.279.
[3] T. Nawz, A. Safdar, M. Hussain, D. Sung Lee, and M. Siyar, "Graphene to Advanced MoS2: A Review of Structure, Synthesis, and Optoelectronic Device Application," Crystals, vol. 10, no. 10, 2020, doi: 10.3390/cryst10100902.
[4] T. Kang, T. W. Tang, B. Pan, H. Liu, K. Zhang, and Z. Luo, "Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics," ACS materials Au, vol. 2, no. 6, pp. 665-685, 2022.
[5] D. Gupta, V. Chauhan, and R. Kumar, "A comprehensive review on synthesis and applications of molybdenum disulfide MoS2 material: Past and recent developments," Inorganic Chemistry Communications, vol. 121, p. 108200, 2020.
[6] X. Chen, Y. Wen, X. Zeng, S. E. Xu, W. Wang, and J. Ding, "Preparation and optical proprety of MoS2 layered-nano film," SCIENTIA SINICA Technologica, vol. 46, no. 7, pp. 731-736, 2016, doi: 10.1360/n092016-00067.
[7] R. Shahzad, T. Kim, and S.-W. Kang, "Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis," Thin Solid Films, vol. 641, pp. 79-86, 2017, doi: 10.1016/j.tsf.2016.12.041.
[8] V. C. Rigi, M. Jayaraj, and K. Saji, "Envisaging radio frequency magnetron sputtering as an efficient method for large scale deposition of homogeneous two dimensional MoS2," Applied Surface Science, vol. 529, p. 147158, 2020.
[9] Y. Huang et al., "Universal mechanical exfoliation of large-area 2D crystals," Nat Commun, vol. 11, no. 1, p. 2453, May 15 2020, doi: 10.1038/s41467-020-16266-w.
[10] L. Liu, Y. Huang, J. Sha, and Y. Chen, "Layer-controlled precise fabrication of ultrathin MoS2 films by atomic layer deposition," Nanotechnology, vol. 28, no. 19, p. 195605, 2017.
[11] H. Park et al., "Exceptionally Uniform and Scalable Multilayer MoS(2) Phototransistor Array Based on Large-Scale MoS2 Grown by RF Sputtering, Electron Beam Irradiation, and Sulfurization," ACS Appl Mater Interfaces, vol. 12, no. 18, pp. 20645-20652, May 6 2020, doi: 10.1021/acsami.0c02393.
[12] Y. J. Cho, Y. Sim, J.-H. Lee, N. T. Hoang, and M.-J. Seong, "Size and shape control of CVD-grown monolayer MoS2," Current Applied Physics, vol. 45, pp. 99-104, 2023, doi: 10.1016/j.cap.2022.11.008.
[13] D. Gupta, V. Chauhan, and R. Kumar, "Sputter deposition of 2D MoS2 thin films -A critical review from a surface and structural perspective," Inorganic Chemistry Communications, vol. 144, 2022, doi: 10.1016/j.inoche.2022.109848.
[14] H. Li et al., "From Bulk to Monolayer MoS2: Evolution of Raman Scattering," Advanced Functional Materials, vol. 22, no. 7, pp. 1385-1390, 2012, doi: 10.1002/adfm.201102111.
[15] X. Li and H. Zhu, "Two-dimensional MoS2: Properties, preparation, and applications," Journal of Materiomics, vol. 1, no. 1, pp. 33-44, 2015, doi: 10.1016/j.jmat.2015.03.003.
[16] N. Thomas et al., "2D MoS2: structure, mechanisms, and photocatalytic applications," Materials Today Sustainability, vol. 13, 2021, doi: 10.1016/j.mtsust.2021.100073.
[17] S. Jayabal, J. Wu, J. Chen, D. Geng, and X. Meng, "Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties and emerging applications," Materials Today Energy, vol. 10, pp. 264-279, 2018, doi: 10.1016/j.mtener.2018.10.009.
[18] C. Meng et al., "Recent Modification Strategies of MoS2 for Enhanced Electrocatalytic Hydrogen Evolution," Molecules, vol. 25, no. 5, Mar 3 2020, doi: 10.3390/molecules25051136.
[19] Y. Cheng and U. Schwingenschlögl, "MoS2: A First-Principles Perspective," in MoS2, (Lecture Notes in Nanoscale Science and Technology, 2014, ch. Chapter 5, pp. 103-128.
[20] X. Zhang et al., "Flux method growth of bulk MoS2 single crystals and their application as a saturable absorber," CrystEngComm, vol. 17, no. 21, pp. 4026-4032, 2015, doi: 10.1039/c5ce00484e.
[21] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single-and few-layer MoS2," ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010.
[22] A. Splendiani et al., "Emerging photoluminescence in monolayer MoS2," Nano Lett, vol. 10, no. 4, pp. 1271-5, Apr 14 2010, doi: 10.1021/nl903868w.
[23] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, "Photoluminescence from chemically exfoliated MoS2," Nano Lett, vol. 11, no. 12, pp. 5111-6, Dec 14 2011, doi: 10.1021/nl201874w.
[24] V. P. Pham, H.-S. Jang, D. Whang, and J.-Y. Choi, "Direct growth of graphene on rigid and flexible substrates: Progress, applications, and challenges," Chemical Society Reviews, vol. 46, no. 20, pp. 6276-6300, 2017.
[25] J. T. Gudmundsson, "Physics and technology of magnetron sputtering discharges," Plasma Sources Science and Technology, vol. 29, no. 11, p. 113001, 2020.
[26] Y. C. Cho and S. I. Ahn, "Fabricating a Raman spectrometer using an optical pickup unit and pulsed power," Sci Rep, vol. 10, no. 1, p. 11692, Jul 16 2020, doi: 10.1038/s41598-020-68650-7.
[27] C. Yim et al., "Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry," Applied Physics Letters, vol. 104, no. 10, 2014, doi: 10.1063/1.4868108.
[28] X. Dai, A. Zhou, L. Feng, Y. Wang, J. Xu, and J. Li, "Molybdenum thin films with low resistivity and superior adhesion deposited by radio-frequency magnetron sputtering at elevated temperature," Thin Solid Films, vol. 567, pp. 64-71, 2014, doi: 10.1016/j.tsf.2014.07.043.
[29] Z. Zhu et al., "Effect of precursor ratio on the morphological and optical properties of CVD-grown monolayer MoS2 nanosheets," Materials Research Express, vol. 8, no. 4, 2021, doi: 10.1088/2053-1591/abf3df.
[30] F. Chen, W. Su, S. Ding, and L. Fu, "Growth and optical properties of large-scale MoS2 films with different thickness," Ceramics International, vol. 45, no. 12, pp. 15091-15096, 2019, doi: 10.1016/j.ceramint.2019.04.248. |