博碩士論文 111226058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:18.116.19.224
姓名 歐陽依晴(Yi-Ching Ou Yang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 矽基二維材料二硫化鉬薄膜低溫製程 與均勻性之研究
(Research on the low-temperature process and uniformity of the silicon based 2D MoS2 thin films)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 二硫化鉬由於良好的光電特性,如高載子遷移率、能隙可透過層數調節等,被視為擁有突破傳統半導體材料物理極限的潛能,因此人們開始對其進行大量的研究。本研究旨在研究如何低溫成長均勻的可控層數二硫化鉬薄膜,我們使用兩種製程方法,並比較成長的結果。
第一種方法為兩階段化學氣相沉積製程,先濺鍍鉬薄膜,接著利用硫粉對鉬薄膜進行硫化。第二種方法為一階段物理氣相沉積製程,直接在濺鍍鉬靶材時通入硫化氫,使鉬及硫原子產生化學反應,成長二硫化鉬薄膜。兩種實驗方法皆透過調整濺鍍時間、功率及溫度等參數,以找出最佳的製程條件。
本研究利用拉曼光譜、X射線光電子能譜儀及PL光譜,確認薄膜分子結構、元素分析及光致發光效率外,也使用拉曼區域掃描(Raman Mapping)及原子力顯微鏡,分析薄膜的均勻性及表面粗糙度。實驗結果顯示兩種製程方法皆可透過調控濺鍍時間控制層數,然而在粗糙度及均勻性方面,一步法成長的薄膜粗糙度為0.318 nm,明顯低於兩步法製程的薄膜粗糙度3.62 nm,在mapping結果也具有更好的均勻性。不僅如此,一步法在190 ℃成長的薄膜,其光致發光效率和兩步法於550 ℃成長差不多。從研究結果確認,以一步法製程能在較低溫便成長出具良好光致發光效率,且均勻的平整二硫化鉬薄膜。
摘要(英) Molybdenum disulfide (MoS2) is considered to have the potential to break through the physical limits of conventional semiconductor materials due to its good optoelectronic properties, such as high carrier mobility and tunable bandgap, etc. leading people extensive research on it. This study aims to grow uniform and controllable-layer MoS2 thin films at low temperature. Two methods have been used to grow MoS2 with different results. The first method is a two-step chemical vapor deposition (CVD) process, where molybdenum (Mo) thin films are first sputtered, then sulfur powder was applied to sulfide the molybdenum films. The second method is a one-step physical vapor deposition (PVD) process, where molybdenum targets are sputtered directly with hydrogen sulfide plasma to be reacted as molybdenum disulfide. The parameters, sputtering time, power, and temperature are adjusted in both methods to determine the best processing conditions. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy have been applied to confirm the molecular structure, elemental composition, and photoluminescence efficiency of the thin films.
Raman area scanning and atomic force microscopy (AFM) have also been used to analyze the uniformity and the surface roughness of the films. The experimental results show that both methods can control the number of layers by adjusting the sputtering time. However, in terms of roughness and uniformity, the roughness of the one-step process is 0.318 nm, which is significantly lower than that the two-step process at 3.62 nm, and the mapping results also have better uniformity. Moreover, the photoluminescence efficiency of the one-step process at 190°C is similar to that the two-step process at 550°C. From the results of the study, it is confirmed that the one-step process can produce flat and uniform MoS2 thin films with good photoluminescence efficiency at lower temperatures.
關鍵字(中) ★ 二硫化鉬
★ 二維材料
★ 低溫
★ 均勻
關鍵字(英)
論文目次 摘要 iv
Abstract vii
目錄 ix
表目錄 xi
圖目錄 xiii
第一章、 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 2
1-4 文獻回顧 3
1-4-1 二硫化鉬的製備方式 3
第二章、 基礎理論及文獻回顧 9
2-1 二硫化鉬的特性 9
2-1-1 二硫化鉬的晶體結構 9
2-1-2 二硫化鉬的光學特性 11
2-2 實驗原理 12
2-2-1 化學氣相沉積法(Chemical Vapor Deposition, CVD) 12
2-2-2 物理氣相沉積法(Physical vapor deposition, PVD) 13
第三章、 實驗架構與分析儀器介紹 15
3-1 實驗儀器 15
3-1-1 磁控濺鍍系統 15
3-1-2 高溫爐管系統 15
3-2 實驗方法 16
3-2-1 兩階段化學氣相沉積 17
3-2-2 一階段物理氣相沉積 18
3-3 分析儀器 19
3-3-1 拉曼光譜儀(Raman spectrometer) 19
3-3-2 光致發光光譜儀 (Photoluminescence Spectrometer, PL) 20
3-3-3 原子力顯微鏡(Atomic Force Microscope, AFM) 20
3-3-4 X射線光電子能譜儀( X-ray Photoelectron Spectroscopy, XPS) 21
3-3-5 高解析度穿透式電子顯微鏡(High Resolution-Transmission Electron Microscope, HR-TEM) 22
3-3-6 掃描電子顯微鏡(Scanning Electron Microscope,SEM) 22
第四章、 實驗結果 24
4-1 兩階段二硫化鉬製程 24
4-1-1 調變濺鍍鉬瓦數之分析 24
4-1-1-1 於濺鍍功率5W濺鍍鉬薄膜並調變濺鍍時間之分析 24
4-1-1-2 於濺鍍功率10W濺鍍鉬薄膜並調變濺鍍時間之分析 28
4-1-1-3 於濺鍍功率15W濺鍍鉬薄膜並調變濺鍍時間之分析 31
4-1-1-4 於濺鍍功率20W濺鍍鉬薄膜並調變濺鍍時間之分析 34
4-1-1-5 濺鍍功率之數據整理 37
4-1-2 調變硫粉加熱溫度之二硫化鉬分析 40
4-1-3 調變製程溫度之二硫化鉬分析 45
4-1-4 調變硫粉克數之二硫化鉬分析 47
4-2 一階段二硫化鉬製程 50
4-2-1 調變濺鍍時間生長之二硫化鉬分析 50
4-2-2 調變氣體比例生長之二硫化鉬分析 54
4-2-3 調變濺鍍功率生長之二硫化鉬分析 56
4-2-4 調變生長溫度生長之二硫化鉬分析 57
4-2-5 調變生長時間之二硫化鉬層數分析 62
4-3 實驗結果與電性量測 65
4-3-1 實驗結果比較 65
4-3-2 電性量測 68
第五章、 結論與未來展望 69
5-1 結論 69
5-2 未來展望 70
參考文獻 71
參考文獻 [1] X. Huang, C. Liu, and P. Zhou, "2D semiconductors for specific electronic applications: from device to system," npj 2D Materials and Applications, vol. 6, no. 1, 2022, doi: 10.1038/s41699-022-00327-3.
[2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat Nanotechnol, vol. 6, no. 3, pp. 147-50, Mar 2011, doi: 10.1038/nnano.2010.279.
[3] T. Nawz, A. Safdar, M. Hussain, D. Sung Lee, and M. Siyar, "Graphene to Advanced MoS2: A Review of Structure, Synthesis, and Optoelectronic Device Application," Crystals, vol. 10, no. 10, 2020, doi: 10.3390/cryst10100902.
[4] T. Kang, T. W. Tang, B. Pan, H. Liu, K. Zhang, and Z. Luo, "Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics," ACS materials Au, vol. 2, no. 6, pp. 665-685, 2022.
[5] D. Gupta, V. Chauhan, and R. Kumar, "A comprehensive review on synthesis and applications of molybdenum disulfide MoS2 material: Past and recent developments," Inorganic Chemistry Communications, vol. 121, p. 108200, 2020.
[6] X. Chen, Y. Wen, X. Zeng, S. E. Xu, W. Wang, and J. Ding, "Preparation and optical proprety of MoS2 layered-nano film," SCIENTIA SINICA Technologica, vol. 46, no. 7, pp. 731-736, 2016, doi: 10.1360/n092016-00067.
[7] R. Shahzad, T. Kim, and S.-W. Kang, "Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis," Thin Solid Films, vol. 641, pp. 79-86, 2017, doi: 10.1016/j.tsf.2016.12.041.
[8] V. C. Rigi, M. Jayaraj, and K. Saji, "Envisaging radio frequency magnetron sputtering as an efficient method for large scale deposition of homogeneous two dimensional MoS2," Applied Surface Science, vol. 529, p. 147158, 2020.
[9] Y. Huang et al., "Universal mechanical exfoliation of large-area 2D crystals," Nat Commun, vol. 11, no. 1, p. 2453, May 15 2020, doi: 10.1038/s41467-020-16266-w.
[10] L. Liu, Y. Huang, J. Sha, and Y. Chen, "Layer-controlled precise fabrication of ultrathin MoS2 films by atomic layer deposition," Nanotechnology, vol. 28, no. 19, p. 195605, 2017.
[11] H. Park et al., "Exceptionally Uniform and Scalable Multilayer MoS(2) Phototransistor Array Based on Large-Scale MoS2 Grown by RF Sputtering, Electron Beam Irradiation, and Sulfurization," ACS Appl Mater Interfaces, vol. 12, no. 18, pp. 20645-20652, May 6 2020, doi: 10.1021/acsami.0c02393.
[12] Y. J. Cho, Y. Sim, J.-H. Lee, N. T. Hoang, and M.-J. Seong, "Size and shape control of CVD-grown monolayer MoS2," Current Applied Physics, vol. 45, pp. 99-104, 2023, doi: 10.1016/j.cap.2022.11.008.
[13] D. Gupta, V. Chauhan, and R. Kumar, "Sputter deposition of 2D MoS2 thin films -A critical review from a surface and structural perspective," Inorganic Chemistry Communications, vol. 144, 2022, doi: 10.1016/j.inoche.2022.109848.
[14] H. Li et al., "From Bulk to Monolayer MoS2: Evolution of Raman Scattering," Advanced Functional Materials, vol. 22, no. 7, pp. 1385-1390, 2012, doi: 10.1002/adfm.201102111.
[15] X. Li and H. Zhu, "Two-dimensional MoS2: Properties, preparation, and applications," Journal of Materiomics, vol. 1, no. 1, pp. 33-44, 2015, doi: 10.1016/j.jmat.2015.03.003.
[16] N. Thomas et al., "2D MoS2: structure, mechanisms, and photocatalytic applications," Materials Today Sustainability, vol. 13, 2021, doi: 10.1016/j.mtsust.2021.100073.
[17] S. Jayabal, J. Wu, J. Chen, D. Geng, and X. Meng, "Metallic 1T-MoS2 nanosheets and their composite materials: Preparation, properties and emerging applications," Materials Today Energy, vol. 10, pp. 264-279, 2018, doi: 10.1016/j.mtener.2018.10.009.
[18] C. Meng et al., "Recent Modification Strategies of MoS2 for Enhanced Electrocatalytic Hydrogen Evolution," Molecules, vol. 25, no. 5, Mar 3 2020, doi: 10.3390/molecules25051136.
[19] Y. Cheng and U. Schwingenschlögl, "MoS2: A First-Principles Perspective," in MoS2, (Lecture Notes in Nanoscale Science and Technology, 2014, ch. Chapter 5, pp. 103-128.
[20] X. Zhang et al., "Flux method growth of bulk MoS2 single crystals and their application as a saturable absorber," CrystEngComm, vol. 17, no. 21, pp. 4026-4032, 2015, doi: 10.1039/c5ce00484e.
[21] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single-and few-layer MoS2," ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010.
[22] A. Splendiani et al., "Emerging photoluminescence in monolayer MoS2," Nano Lett, vol. 10, no. 4, pp. 1271-5, Apr 14 2010, doi: 10.1021/nl903868w.
[23] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, "Photoluminescence from chemically exfoliated MoS2," Nano Lett, vol. 11, no. 12, pp. 5111-6, Dec 14 2011, doi: 10.1021/nl201874w.
[24] V. P. Pham, H.-S. Jang, D. Whang, and J.-Y. Choi, "Direct growth of graphene on rigid and flexible substrates: Progress, applications, and challenges," Chemical Society Reviews, vol. 46, no. 20, pp. 6276-6300, 2017.
[25] J. T. Gudmundsson, "Physics and technology of magnetron sputtering discharges," Plasma Sources Science and Technology, vol. 29, no. 11, p. 113001, 2020.
[26] Y. C. Cho and S. I. Ahn, "Fabricating a Raman spectrometer using an optical pickup unit and pulsed power," Sci Rep, vol. 10, no. 1, p. 11692, Jul 16 2020, doi: 10.1038/s41598-020-68650-7.
[27] C. Yim et al., "Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry," Applied Physics Letters, vol. 104, no. 10, 2014, doi: 10.1063/1.4868108.
[28] X. Dai, A. Zhou, L. Feng, Y. Wang, J. Xu, and J. Li, "Molybdenum thin films with low resistivity and superior adhesion deposited by radio-frequency magnetron sputtering at elevated temperature," Thin Solid Films, vol. 567, pp. 64-71, 2014, doi: 10.1016/j.tsf.2014.07.043.
[29] Z. Zhu et al., "Effect of precursor ratio on the morphological and optical properties of CVD-grown monolayer MoS2 nanosheets," Materials Research Express, vol. 8, no. 4, 2021, doi: 10.1088/2053-1591/abf3df.
[30] F. Chen, W. Su, S. Ding, and L. Fu, "Growth and optical properties of large-scale MoS2 films with different thickness," Ceramics International, vol. 45, no. 12, pp. 15091-15096, 2019, doi: 10.1016/j.ceramint.2019.04.248.
指導教授 陳昇暉 戴朝義 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明