博碩士論文 106682001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:18.226.4.249
姓名 陳冠廷(Kuan-Ting Chen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 南海東北坡第四紀晚期沉積環境研究
(Study on the Sedimentary Environment of the Late Quaternary in the Northeast Continental Slope of the South China Sea)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 本研究在南海東北部大陸斜坡的近海床地層中發現了一個廣泛分布的層序邊界,且此區域性層序邊界可作為大陸斜坡環境中區分末次冰盛期前後的一個重要指標界面。為了釐清區域性層序邊界的形成機制,並重建相關的沉積環境變化歷史,本研究結合多種海洋地球物理及地質分析方法,包括底拖式聲納系統、沉積物岩芯分析、放射性定年等。根據底質剖面影像,本研究綜整了區域性層序邊界在好景海脊、手掌海脊以及指標海脊的分布情形,發現區域性層序邊界主要座落於地形相對平坦之高區,例如好景海脊兩翼的階地、海脊之間的槽溝,與手掌海脊、指標海脊的上方等區域。從沉積物岩芯MD18-3545的粒徑分析結果、放射性定年及岩芯影像所顯示的沉積構造特徵進行討論,南海東北部大陸斜坡在過去三萬五千年可分為四個獨立的分期:第一期為侵蝕事件前,相對海平面約為-60公尺,此時期的沉積環境以穩定堆積的半遠洋沉積物為主,並且有較弱的底流;第二期位於末次冰盛期的低水位時期,並結束於約11,900年前,此時期的強烈底流使得海床轉變為侵蝕環境;第三期起始於約11,900年前,此時海平面已回升至-60公尺,沉積環境轉為以堆積為主,並形成區域性層序邊界。第三期的底流強度隨著海平面上升的趨勢由弱轉強並持續上升,沉積機制也從半遠洋沉積型態轉為受到底流控制的等深流岩系統;第四期起始於約6,500年前,此時海平面高度已趨於穩定,同時底流強度也隨之減弱,海床的環境仍以沉積型態為主,並同時受到底流的影響而持續發展等深流岩系統。在結論部份,本研究認為南海東北部大陸斜坡近三萬五千年以來的沉積環境很大程度地受到全球氣候及海平面高度的影響,此影響同時改變底流強度的變化,進而控制了大陸斜坡的沉積環境。
摘要(英) In this study, we identified a near surface regional sequence boundary in the continental slope of the northeastern South China Sea. This regional sequence boundary can be used as an important indicator for distinguishing the sequences which formed before or after the Last Glacial Maximum in the continental slope environment. We employed multiple marine geophysical and geological methods, including deep-towed sonar system, sediment core analysis, and radiocarbon dating, to investigate the formation mechanism of the regional sequence boundary and reconstruct the sedimentary environment change history in the study area.
According to the sub-bottom profiler interpretations, we found the regional sequence boundary predominantly occurs in topographically flat areas, such as terraces on the flanks of the Good-Weather Ridge, bathymetric troughs between ridges, and atop the Palm Ridge and the Pointer Ridge. Based on grain size analysis, radiocarbon dating and core images of the core MD18-3545, we propose four sedimentary periods in the last 35,000 years in the study area. The Period 1 was in the stage before the regional seafloor erosive process. The relative sea-level was approximately -60 meters, and the sediment facies present a stable depositional hemipelagite facies with weak bottom current. The Period 2 started in the sea-level lowstand stage of the Last Glacial Maximum (LGM), and ended in about 11,900 year BP. The strong bottom current in this period transformed the sedimentary environment from depositional to erosive. Following the Period 2, the relative sea-level in the Period 3 has rose to -60 m and the sedimentary environment returned to depositional, forming the regional sequence boundary. Bottom current intensity increased with rising sea-levels. The sediment facies also shifted from hemipelagite to contourite, which controlled by strengthened bottom current. The Period 4 started in around 6,500 year BP. The relative sea-level is in stable highstand. Although bottom current intensity decreased compared to the previous period, it still played a significant role in shaping the seafloor environment and developing the contourite system. We propose that global climate changes and sea-level fluctuations have impacted bottom current intensities, sedimentary environments, and seafloor morphologies in the northeastern slope of South China Sea over the past 35,000 years.
關鍵字(中) ★ 第四紀
★ 南海
★ 末次冰盛期
★ 大陸斜坡
★ 好景海脊
★ 指標海脊
★ 手掌海脊
★ 等深流岩
★ 粒徑分析
★ 沉積環境
關鍵字(英) ★ Quaternary
★ South China Sea
★ Last Glacial Maximum
★ Continental Slope
★ Good-Weather Ridge
★ Pointer Ridge
★ Palm Ridge
★ Contourite
★ Particle Size Analysis
★ Sedimentary Environment
論文目次 一、 緒論 1
1.1. 末次冰盛期海平面變化 1
1.2. 大陸斜坡沉積環境 2
1.3. 等深流岩概述 2
1.4. 研究區域地質及海洋背景 3
1.5. 研究目標 5
二、 研究資料及方法 18
2.1. 底拖式聲納系統 18
2.1.1. 底質剖面儀 18
2.1.2. 側掃聲納 18
2.1.3. 資料處理 19
2.2. 沉積物岩芯 21
2.2.1. 岩芯採樣 21
2.2.2. 粒徑分析 22
2.2.3. 岩芯影像 23
2.2.4. 放射性定年 23
2.3. 船載都卜勒流剖儀 24
三、 研究結果 34
3.1. 區域性層序邊界 34
3.1.1. 好景海脊區域地層特徵 35
3.1.2. 手掌海脊區域地層特徵 36
3.1.3. 指標海脊區域地層特徵 37
3.2. 海流特性與近代海床侵蝕特徵 54
3.3. 岩芯描述及影像結果 59
3.4. 粒徑分析結果 63
3.5. 岩芯物理性質 68
3.6. 放射性定年分析結果 70
四、 討論 77
4.1. 南海東北部大陸斜坡晚第四紀以來沉積環境分期 77
4.2. 古海流流速變化趨勢 82
4.3. 各沉積時期沉積機制分析 91
4.4. 事件層判定與沉積速率探討 102
4.5. 海平面升降與沉積環境之關聯 106
五、 結論 111
六、 未來研究方向 112
七、 參考文獻 113
參考文獻 [1] R. G. Fairbanks. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637-642 (1989). https://doi.org:https://doi.org/10.1038/342637a0
[2] E. J. Rohling, M. Fenton, F. J. Jorissen, P. Bertrand, G. Ganssen & J. P. Caulet. Magnitudes of sea-level lowstands of the past 500,000 years. Nature 394, 162-165 (1998). https://doi.org:https://doi.org/10.1038/28134
[3] M. Siddall, E. J. Rohling, A. Almogi-Labin, C. Hemleben, D. Meischner, I. Schmelzer & D. A. Smeed. Sea-level fluctuations during the last glacial cycle. Nature 423, 853-858 (2003). https://doi.org:10.1038/nature01690
[4] P. U. Clark, A. S. Dyke, J. D. Shakun, A. E. Carlson, J. Clark, B. Wohlfarth, J. X. Mitrovica, S. W. Hostetler & A. M. McCabe. The Last Glacial Maximum. Science 325 (5941), 710-714 (2009). https://doi.org:10.1126/science.1172873
[5] K. Lambeck, H. Rouby, A. Purcell, Y. Sun & M. Sambridge. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. PNAS 111, 15296-15303 (2014).
[6] J. C. V. Wagoner, R. M. Mitchum, K. M. Campion & V. D. Rahmanian. Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High-Resolution Correlation of Time and Facies. AAPG Methods in Exploration Series 7 (1990). https://doi.org:https://doi.org/10.1306/Mth7510
[7] J. C. V. Wagoner, H. W. Posamentier, R. M. Mitchum, P. R. Vail, J. F. Sarg, T. S. Loutit & J. Hardenbol. in Sea-Level Changes: An Integrated Approach Vol. 42 (eds Cheryl K. Wilgus, Bruce S. Hastings, Henry Posamentier, John Van Wagoner, Charles A. Ross, & Christopher G. St. C. Kendall) 39-45 (SEPM Society for Sedimentary Geology, 1988).
[8] P. R. Vail, R. M. Mitchum Jr. & S. Thompson III. in Seismic Stratigraphy — Applications to Hydrocarbon Exploration Vol. 26 (ed Charles E. Payton) 63-81 (American Association of Petroleum Geologists, 1977).
[9] O. Catuneanu. Principles of Sequence Stratigraphy. (Elsevier, Amsterdam, 2006).
[10] H. W. Posamentier & G. P. Allen. Siliciclastic Sequence Stratigraphy: Concepts and Applications., Vol. 7 (SEPM (Society for Sedimentary Geology), Tulsa, 1999).
[11] F. J. Hernández-Molina, E. Llave & D. A. V. Stow. in Contourites (Developments in Sedimentology, Volume 60) (eds M. Rebesco & A. Camerlenghi) Ch. 19, 379-408 (Elsevier B.V., 2008).
[12] E. Llave, J. Schönfeld, F. J. Hernández-Molina, T. Mulder, L. Somoza, V. Díaz del Río & I. Sánchez-Almazo. High-resolution stratigraphy of the Mediterranean outflow contourite system in the Gulf of Cadiz during the late Pleistocene: The impact of Heinrich events. Marine Geology 227, 241-262 (2006). https://doi.org:10.1016/j.margeo.2005.11.015
[13] E. Miramontes, A. Cattaneo, G. Jouet, E. Théreau, Y. Thomas, M. Rovere, E. Cauquil & F. Trincardi. The Pianosa Contourite Depositional System (Northern Tyrrhenian Sea): Drift morphology and Plio-Quaternary stratigraphic evolution. Marine Geology 378, 20-42 (2016). https://doi.org:10.1016/j.margeo.2015.11.004
[14] J.-C. Faugères & T. Mulder. in Developments in Sedimentology Vol. 63 (eds Heiko HüNeke & Thierry Mulder) Ch. 3, 149-214 (Elsevier, 2011).
[15] D. A. V. Stow, S. Hunter, D. Wilkinson & F. J. Hernández-Molina. in Contourites (Developments in Sedimentology, Volume 60) (eds M. Rebesco & A. Camerlenghi) Ch. 9, 143-156 (Elsevier B.V., 2008).
[16] M. Rebesco, F. J. Hernández-Molina, D. Van Rooij & A. Wåhlin. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations. Marine Geology 352, 111-154 (2014). https://doi.org:10.1016/j.margeo.2014.03.011
[17] C.-S. Liu, B. Deffontaines, C.-Y. Lu & S. Lallemand. Deformation Patterns of an Accretionary Wedge in the Transition Zone from Subduction to Collision Offshore Southwestern Taiwan. Marine Geophysical Researches 25, 123-137 (2004). https://doi.org:10.1007/s11001-005-0738-0
[18] A. T. Lin, C.-S. Liu, C.-C. Lin, P. Schnurle, G.-Y. Chen, W.-Z. Liao, L. S. Teng, H.-J. Chuang & M.-S. Wu. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology 255, 186-203 (2008). https://doi.org:10.1016/j.margeo.2008.10.002
[19] A. T. Lin, B. Yao, S.-K. Hsu, C.-S. Liu & C.-Y. Huang. Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics 479, 28-42 (2009). https://doi.org:10.1016/j.tecto.2008.11.004
[20] S. J. Dadson, N. Hovius, H. Chen, W. B. Dade, M.-L. Hsieh, S. D. Willett, J.-C. Hu, M.-J. Horng, M.-C. Chen, C. P. Stark, D. Lague & J.-C. Lin. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648-651 (2003).
[21] C.-A. Huh, H.-L. Lin, S. Lin & Y.-W. Huang. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems 76, 405-416 (2009). https://doi.org:10.1016/j.jmarsys.2007.07.009
[22] C.-C. Su, S.-T. Hsu, H.-H. Hsu, J.-Y. Lin & J.-J. Dong. Sedimentological characteristics and seafloor failure offshore SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 29, 65-76 (2018). https://doi.org:10.3319/tao.2017.06.21.01
[23] S.-K. Hsu, J. Kuo, C.-L. Lo, C.-H. Tsai, W.-B. Doo, C.-Y. Ku & J.-C. Sibuet. Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 19 (2008). https://doi.org:10.3319/tao.2008.19.6.767(pt)
[24] S.-C. Chen, S.-K. Hsu, Y. Wang, S.-H. Chung, P.-C. Chen, C.-H. Tsai, C.-S. Liu, H.-S. Lin & Y.-W. Lee. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences 92, 201-214 (2014). https://doi.org:10.1016/j.jseaes.2013.10.009
[25] T. Lüdmann, H. K. Wong & K. Berglar. Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments. Geophysical Research Letters 32 (2005). https://doi.org:10.1029/2004gl021967
[26] H. Li, Y. Wang, W. Zhu, Q. Xu, Y. He, W. Tang, H. Zhuo, D. Wang, J. Wu & D. Li. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea. Marine and Petroleum Geology 43, 370-380 (2013). https://doi.org:10.1016/j.marpetgeo.2012.12.010
[27] H. Chen, X. Xie, D. Van Rooij, T. Vandorpe, M. Su & D. Wang. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea. Marine Geology 355, 36-53 (2014). https://doi.org:10.1016/j.margeo.2014.05.008
[28] C. Gong, Y. Wang, S. Xu, K. T. Pickering, X. Peng, W. Li & Q. Yan. The northeastern South China Sea margin created by the combined action of down-slope and along-slope processes: Processes, products and implications for exploration and paleoceanography. Marine and Petroleum Geology 64, 233-249 (2015). https://doi.org:10.1016/j.marpetgeo.2015.01.016
[29] X. Wang, H. Zhuo, Y. Wang, P. Mao, M. He, W. Chen, J. Zhou, S. Gao & M. Wang. Controls of contour currents on intra-canyon mixed sedimentary processes: Insights from the Pearl River Canyon, northern South China Sea. Marine Geology 406, 193-213 (2018). https://doi.org:10.1016/j.margeo.2018.09.016
[30] F. Nan, H. Xue & F. Yu. Kuroshio intrusion into the South China Sea: A review. Progress in Oceanography 137, 314-333 (2015). https://doi.org:10.1016/j.pocean.2014.05.012
[31] Q. Quan, H. Xue, H. Qin, X. Zeng & S. Peng. Features and variability of the South China Sea western boundary current from 1992 to 2011. Ocean Dynamics 66, 795-810 (2016). https://doi.org:10.1007/s10236-016-0951-1
[32] S. Yin, F. J. Hernandez-Molina, L. Lin, J. Chen, W. Ding & J. Li. Isolation of the South China Sea from the North Pacific Subtropical Gyre since the latest Miocene due to formation of the Luzon Strait. Sci Rep 11, 1562 (2021). https://doi.org:10.1038/s41598-020-79941-4
[33] B. Nathalie & R. Gueorgui. MD 214 / EAGER cruise, RV Marion Dufresne. (2018). https://doi.org:https://doi.org/10.17600/18000520
[34] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J. C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper & R. Kikinis. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30, 1323-1341 (2012). https://doi.org:10.1016/j.mri.2012.05.001
[35] B. T. Reilly, J. S. Stoner & J. Wiest. SedCT: MATLAB™ tools for standardized and quantitative processing of sediment core computed tomography (CT) data collected using a medical CT scanner. Geochemistry, Geophysics, Geosystems 18, 3231-3240 (2017). https://doi.org:10.1002/2017gc006884
[36] M. Stuiver, P. J. Reimer & R. W. Reimer. CALIB 8.2, <http://calib.org> (2021).
[37] T. J. Heaton, P. Köhler, M. Butzin, E. Bard, R. W. Reimer, W. E. N. Austin, C. Bronk Ramsey, P. M. Grootes, K. A. Hughen, B. Kromer, P. J. Reimer, J. Adkins, A. Burke, M. S. Cook, J. Olsen & L. C. Skinner. Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP). Radiocarbon 62, 779-820 (2020). https://doi.org:10.1017/rdc.2020.68
[38] P. Hjulström. Studies of the morphological activity of rivers as illustrated by the River Fyris PhD thesis, (1935).
[39] P. Hjulström. in Recent Marine Sediments 5-31 (Am. Ass. Petrol. Geols, Tulsa, 1939).
[40] I. N. McCave. Erosion, transport and deposition of fine-grained marine sediments. Geological Society, London, Special Publications 15, 35-69 (1984). https://doi.org:https://doi.org/10.1144/GSL.SP.1984.015.01.03
[41] I. N. McCave, B. Manighetti & G. Robinson. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeooceanography. Paleoceanography 10, 593-610 (1995).
[42] I. N. McCave, S. J. Crowhurst, G. Kuhn, C. D. Hillenbrand & M. P. Meredith. Minimal change in Antarctic Circumpolar Current flow speed between the last glacial and Holocene. Nature Geoscience 7, 113-116 (2013). https://doi.org:10.1038/ngeo2037
[43] I. N. McCave, D. J. R. Thornalley & I. R. Hall. Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the ‘Mud Current Meter’. Deep Sea Research Part I: Oceanographic Research Papers 127, 1-12 (2017). https://doi.org:10.1016/j.dsr.2017.07.003
[44] G. S. Visher. Grain Size Distributions and Depositional Processes. Journal of Sedimentary Petrology 39 (3), 1074-1106 (1969).
[45] A. Xu, P. Hu, Z. Chen, C. Shu, X. Wang & Y. Tian. A software tool to plot frequency and cumulative frequency curves automatically for grain size analysis of sediments. Earth Science Informatics 13, 565-571 (2020). https://doi.org:10.1007/s12145-019-00440-w
[46] D. A. V. Stow & J.-C. Faugères. in Contourites (Developments in Sedimentology, Volume 60) (eds M. Rebesco & A. Camerlenghi) Ch. 13, 223-255 (Elsevier B.V., 2008).
[47] D. Stow & Z. Smillie. Distinguishing between Deep-Water Sediment Facies: Turbidites, Contourites and Hemipelagites. Geosciences 10, 68 (2020). https://doi.org:10.3390/geosciences10020068
[48] R. E. Brackenridge, D. A. V. Stow, F. J. Hernández-Molina, C. Jones, A. Mena, I. Alejo, E. Ducassou, E. Llave, G. Ercilla, M. A. Nombela, M. Perez-Arlucea, G. Frances & M. Marzo. Textural characteristics and facies of sand-rich contourite depositional systems. Sedimentology 65, 2223-2252 (2018). https://doi.org:10.1111/sed.12463
[49] S. de Castro, F. J. Hernández‐Molina, W. de Weger, F. J. Jiménez‐Espejo, F. J. Rodríguez‐Tovar, A. Mena, E. Llave, F. J. Sierro & A. McArthur. Contourite characterization and its discrimination from other deep‐water deposits in the Gulf of Cadiz contourite depositional system. Sedimentology (2020). https://doi.org:10.1111/sed.12813
[50] S.-K. Hsu, S.-Y. Wang, Y.-C. Liao, T. F. Yang, S. Jan, J.-Y. Lin & S.-C. Chen. Tide-modulated gas emissions and tremors off SW Taiwan. Earth and Planetary Science Letters 369-370, 98-107 (2013). https://doi.org:10.1016/j.epsl.2013.03.013
[51] S.-K. Hsu, S.-S. Lin, S.-Y. Wang, C.-H. Tsai, W.-B. Doo, S.-C. Chen, J.-Y. Lin, Y.-C. Yeh, H.-F. Wang & C.-W. Su. Seabed gas emissions and submarine landslides off SW Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 29, 7-15 (2018). https://doi.org:10.3319/tao.2016.10.04.01
[52] D. Feng, J.-W. Qiu, Y. Hu, J. Peckmann, H. Guan, H. Tong, C. Chen, J. Chen, S. Gong, N. Li & D. Chen. Cold seep systems in the South China Sea: An overview. Journal of Asian Earth Sciences 168, 3-16 (2018). https://doi.org:10.1016/j.jseaes.2018.09.021
[53] M.-Y. Kuo, D.-R. Kang, C.-H. Chang, C.-H. Chao, C.-C. Wang, H.-H. Chen, C.-C. Su, H.-W. Chen, M.-C. Lai, S. Lin & L.-L. Liu. New records of three deep-sea bathymodiolus mussels (bivalvia: mytilida: mytilidae) from hydrothermal vent and cold seeps in Taiwan. Journal of Marine Science and Technology 27, 352-358 (2019). https://doi.org:10.6119/JMST.201908_27(4).0006
[54] I. N. McCave, B. Manighetti & N. A. S. Beveridge. Circulation in the glacial North Atlantic inferred from grain-size measurements. Nature 374, 149-152 (1995). https://doi.org:10.1038/374149a0
[55] T. Mulder, R. Hassan, E. Ducassou, S. Zaragosi, E. Gonthier, V. Hanquiez, E. Marchès & S. Toucanne. Contourites in the Gulf of Cadiz: a cautionary note on potentially ambiguous indicators of bottom current velocity. Geo-Marine Letters 33, 357-367 (2013). https://doi.org:10.1007/s00367-013-0332-4
指導教授 許樹坤 林殿順(Shu-Kun Hsu Andrew Tien-Shun Lin) 審核日期 2024-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明