參考文獻 |
Abirami, M., & Pattabiraman, V. (2016). Data mining approach for intelligent customer behavior analysis for a retail store. Proceedings of the 3rd International Symposium on Big Data and Cloud Computing Challenges (ISBCC–16’),
Alhawarat, M., & Hegazi, M. (2018). Revisiting k-means and topic modeling, a comparison study to cluster arabic documents. IEEE Access, 6, 42740-42749.
Anitha, P., & Patil, M. M. (2022). RFM model for customer purchase behavior using K-Means algorithm. Journal of King Saud University-Computer and Information Sciences, 34(5), 1785-1792.
Bell, D. E., & Lal, R. (2002). The impact of frequent shopper programs in grocery retailing. Review of Marketing Science (ROMs) Working Paper.
Carbonell, P., Rodríguez‐Escudero, A. I., & Pujari, D. (2009). Customer involvement in new service development: An examination of antecedents and outcomes. Journal of product innovation management, 26(5), 536-550.
Chen, M.-C., Chiu, A.-L., & Chang, H.-H. (2005). Mining changes in customer behavior in retail marketing. Expert Systems with Applications, 28(4), 773-781.
Chen, M., Liu, Q., Chen, S., Liu, Y., Zhang, C.-H., & Liu, R. (2019). XGBoost-based algorithm interpretation and application on post-fault transient stability status prediction of power system. IEEE Access, 7, 13149-13158.
Coates, A., & Ng, A. Y. (2012). Learning feature representations with k-means. In Neural Networks: Tricks of the Trade: Second Edition (pp. 561-580). Springer.
Dhandayudam, P., & Krishnamurthi, I. (2014). Rough set approach for characterizing customer behavior. Arabian Journal for Science and Engineering, 39, 4565-4576.
Fader, P. S., Hardie, B. G., & Lee, K. L. (2005). “Counting your customers” the easy way: An alternative to the Pareto/NBD model. Marketing science, 24(2), 275-284.
Hiziroglu, A. (2013). A neuro-fuzzy two-stage clustering approach to customer segmentation. Journal of Marketing Analytics, 1, 202-221.
Jen, L., Chou, C.-H., & Allenby, G. M. (2003). A Bayesian approach to modeling purchase frequency. Marketing Letters, 14, 5-20.
Joia, L., & Sanz, P. (2004). Purchase Frequency And Transaction Profitability: An Empirical Investigation Into The Brazilian Home Appliance eRetailing Sector.
Koutroumbas, K., & Theodoridis, S. (2008). Pattern recognition. Academic Press.
Lee, J., Jung, O., Lee, Y., Kim, O., & Park, C. (2021). A comparison and interpretation of machine learning algorithm for the prediction of online purchase conversion. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1472-1491.
Liu, Y., & Zhao, H. (2017). Variable importance‐weighted random forests. Quantitative Biology, 5(4), 338-351.
MacQueen, J. B. (1965). On the Asymptotic Behavior of k-means. Defense Technical Information Center, 10.
Marcus, C. (1998). A practical yet meaningful approach to customer segmentation. Journal of consumer marketing, 15(5), 494-504. https://doi.org/10.1108/07363769810235974
Meng, Y., Liang, J., Cao, F., & He, Y. (2018). A new distance with derivative information for functional k-means clustering algorithm. Information Sciences, 463, 166-185.
Munusamy, S., & Murugesan, P. (2020). Modified dynamic fuzzy c-means clustering algorithm–Application in dynamic customer segmentation. Applied Intelligence, 50(6), 1922-1942.
Platzer, M., & Reutterer, T. (2016). Ticking away the moments: Timing regularity helps to better predict customer activity. Marketing science, 35(5), 779-799.
Puccinelli, N. M., Goodstein, R. C., Grewal, D., Price, R., Raghubir, P., & Stewart, D. (2009). Customer experience management in retailing: understanding the buying process. Journal of retailing, 85(1), 15-30.
Qiu, J., Lin, Z., & Li, Y. (2015). Predicting customer purchase behavior in the e-commerce context. Electronic commerce research, 15, 427-452.
Riehmann, P., Hanfler, M., & Froehlich, B. (2005). Interactive sankey diagrams. IEEE Symposium on Information Visualization, 2005. INFOVIS 2005.,
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65.
Rout, D., Kotangale, A., Nath, S., & Roy, B. (2023). An Association Based Approach to Elicit and Measure Impact of Features on Sales of a Garment Retail. 2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1),
Schmittlein, D. C., Morrison, D. G., & Colombo, R. (1987). Counting your customers: Who-are they and what will they do next? Management science, 33(1), 1-24.
Shi, X., Wong, Y. D., Li, M. Z.-F., Palanisamy, C., & Chai, C. (2019). A feature learning approach based on XGBoost for driving assessment and risk prediction. Accident Analysis & Prevention, 129, 170-179.
Shin, H. (2022). XGBoost regression of the most significant photoplethysmogram features for assessing vascular aging. IEEE Journal of Biomedical and Health Informatics, 26(7), 3354-3361.
Sinaga, K. P., & Yang, M.-S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716-80727.
Spoor, J. M. (2023). Improving customer segmentation via classification of key accounts as outliers. Journal of Marketing Analytics, 11(4), 747-760.
Tarczynski, T. (2011). Document Clustering: Concepts, Metrics and Algorithms. International journal of Electronics and Telecommunications, 57(3), 271-277.
Turkmen, B. (2022). Customer Segmentation with machine learning for online retail industry. The European Journal of Social & Behavioural Sciences.
Vosough, Z., Kammer, D., Keck, M., & Groh, R. (2018). Mirroring Sankey Diagrams for Visual Comparison Tasks. VISIGRAPP (3: IVAPP),
Wübben, M., & Wangenheim, F. v. (2008). Instant customer base analysis: Managerial heuristics often “get it right”. Journal of marketing, 72(3), 82-93.
Xie, Q. (2023). Machine Learning on Wine Quality: Prediction and Feature Importance Analysis. alcohol, 8(9.5), 10.11.
Xingang, W., & Chao, W. (2019). Application of Xgboost feature extraction in fault diagnosis of rolling bearing. Mechanical Engineering Science, 1(2).
Zheng, H., Yuan, J., & Chen, L. (2017). Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature importance evaluation. Energies, 10(8), 1168.
Zhu, J., Jiang, Z., Evangelidis, G. D., Zhang, C., Pang, S., & Li, Z. (2019). Efficient registration of multi-view point sets by K-means clustering. Information Sciences, 488, 205-218. |