博碩士論文 111226068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:135 、訪客IP:3.133.126.245
姓名 吳俊漢(Chun-Han Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 在矽基上生長sp2鍵結氮化硼薄膜用於沉積二硫化鉬之研究
(Research on the Growth of sp2 Bonded Boron Nitride Films on Silicon Substrates for Molybdenum Disulfide Deposition)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 在科技日異月新的發展下,sp2-氮化硼薄膜由於無表面懸鍵及寬能隙的特性,因此被看好能扮演良好的介電層材料,希望能與矽結合並合成厚度可控均勻且高品質的sp2-氮化硼薄膜,用以提供二硫化鉬(MoS2)平坦的表面沉積,為本研究的核心主軸。
為了得到均勻的氮化硼薄膜,並改善轉印產生的皺褶、破裂或金屬離子汙染等問題,我們直接在矽(111)和二氧化矽基板上沉積sp2-氮化硼薄膜,並藉由拉曼光譜確認有sp2-氮化硼的E2g峰、TEM確認氮化硼薄膜是水平排列,層與層間距為0.34 nm和0.33 nm及XPS能譜圖確認硼氮元素比為1.12:1和0.99:1,證實我們成功合成sp2-氮化硼薄膜,此外我們也透過調變載氣流量和沉積時間優化薄膜表面粗糙度供後續MoS2沉積。
最後在sp2-氮化硼薄膜上沉積二硫化鉬(MoS2),於MoS2 / sp2-BN / Si(111)結構,用拉曼光譜確認有MoS2的E2g及A1g峰,但基板表面有孔洞無PL光譜訊號,表示MoS2不是好的二維材料。於MoS2 / sp2-BN / SiO2結構,用拉曼光譜確認有MoS2的E2g及A1g峰,PL光譜半高寬為0.12 eV及TEM圖證明MoS2二維材料可以沉積在sp2-氮化硼的薄膜上,說明在二氧化矽基板上的sp2-氮化硼薄膜適合用來沉積MoS2的基板。
摘要(英) With the advancement of technology, sp2-boron nitride (BN) film has been highly regarded as promising dielectric layer material due to the properties of no dangling bonds and wide bandgap. How to fabricate sp2-BN film on Si substrate with controllable thickness, uniformity, high quality, and flat surface is the core focus of this study.
To achieve uniform boron nitride film and prevent wrinkles, fractures, and metal ion contamination during the film transfer, the sp2-BN films were deposited onto Si (111) and SiO2 substrates directly. Raman spectroscopy confirmed the presence of the E2g peak of sp2-BN, TEM images showed horizontal alignment and the interlayer spacing is 0.34 nm and 0.33 nm, and XPS spectra confirmed a B:N ratio is 1.12:1 and 0.99:1, proving the successful synthesis of sp2-BN films. Additionally, we optimized the film surface roughness for MoS2 deposition by adjusting the carrier gas flow and deposition time.
Finally, MoS2 was deposited on the sp2-BN films. For MoS2 / sp2-BN / Si(111) layer structure, Raman spectroscopy confirmed the E2g and A1g peaks of MoS2. Many holes appeared on the surface of the substrate and there was no PL signal for the MoS2 film. It shows the MoS2 is not a good 2-D material. For MoS2 / sp2-BN / SiO2 layer structure, Raman spectroscopy confirmed the E2g and A1g peaks of MoS2. The PL spectrum had a FWHM of 0.12 eV, and TEM images confirmed the 2D material. MoS2 has been deposited on the sp2-BN film. It shows that sp2-BN film on SiO2 substrate is one of the suitable substrates for MoS2 deposition.
關鍵字(中) ★ sp2-氮化硼薄膜
★ 二硫化鉬
關鍵字(英) ★ sp2-boron nitride film
★ Molybdenum Disulfide
論文目次 摘要 I
Abstract II
致謝 III
圖目錄 VII
表目錄 XI
第1章、 研究背景 1
1-1 研究背景 1
1-1-1 半導體元件發展 1
1-1-2 二維材料 2
1-2 氮化硼之分類 4
1-2-1 sp2 -鍵結之氮化硼 5
1-2-2 sp3 -鍵結之氮化硼 7
1-3 氮化硼之特性 8
1-4 研究動機 10
第2章、 文獻探討 12
2-1 沉積sp2-氮化硼薄膜之方式 12
2-1-1 機械剝離法 12
2-1-2 液相剝離法 12
2-1-3 物理氣相沉積法 13
2-1-4 離子束濺鍍法 14
2-1-5 分子束磊晶 15
2-1-6 化學氣相沉積法 17
2-2 以CVD沉積sp2-氮化硼薄膜之特性 18
2-2-1 前驅物 18
2-2-2 過渡金屬基板 19
2-2-3 矽等非金屬基板 21
第3章、 研究方式 23
3-1 實驗方式 23
3-1-1 基板選用 23
3-1-2 基板清潔 23
3-1-3 轉印法製備sp2-氮化硼 24
3-1-4 直接沉積法製備sp2-氮化硼 25
3-1-5 MoS2的製備方式 26
3-2 分析儀器 26
3-2-1 拉曼光譜儀 (Raman Spectrometer) 26
3-2-2 原子力顯微鏡 (AFM) 28
3-2-3 高解析雙束型聚焦離子束系統 (High-Resolution Dual-Beam Focus-Ion-Beam System , FIB) 29
3-2-4 穿透式電子顯微鏡 (Transmission Electron Microscope , TEM) 31
3-2-5 X射線光電子能譜儀 (XPS) 32
第4章、 結果與討論 33
4-1 轉印sp2-氮化硼薄膜在二氧化矽基板上 33
4-2 探討sp2-氮化硼於爐管中不同位置及生長時間之沉積結果 37
4-2-1 探討sp2-氮化硼於爐管不同位置之沉積結果 37
4-2-2 探討六方氮化硼不同生長時間之沉積結果 40
4-3 矽(111)基板上生長sp2-氮化硼薄膜 42
4-3-1 不同沉積溫度之結果 42
4-3-2 調變載氣流量 44
4-3-3 調變沉積時間 46
4-3-4 對矽(111)基板進行氧電漿前處理 48
4-4 直接於二氧化矽基板上生長sp2-氮化硼薄膜 53
4-4-1 不同沉積溫度之結果 53
4-4-2 調變載氣流量 56
4-4-3 調變沉積時間 57
4-5 在sp2-氮化硼薄膜上沉積二硫化鉬 60
4-5-1 轉印sp2-氮化硼薄膜在二氧化矽基板上再沉積二硫化鉬 60
4-5-2 矽(111)基板上生長sp2-氮化硼薄膜再沉積二硫化鉬 62
4-5-3 二氧化矽基板上生長sp2-氮化硼薄膜再沉積二硫化鉬 64
第5章、 總結 71
5-1 結論 71
5-2 未來展望 72
參考資料 73
參考文獻 [1] M. Kanellos, " Moore′s Law to roll on for another decade," in CNET, ed, 2003.
[2] S. Thompson et al., "A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1/spl mu/m/sup 2/SRAM cell," in Digest. International Electron Devices Meeting, 2002: IEEE, pp. 61-64.
[3] K. Mistry et al., "A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging," in 2007 IEEE International Electron Devices Meeting, 2007: IEEE, pp. 247-250.
[4] 曲建仲, "鰭式場效電晶體是什麼?為什麼是台積電與三星決戰關鍵?," in 數位時代, 2023.
[5] D. Akinwande et al., "Graphene and two-dimensional materials for silicon technology," Nature, vol. 573, no. 7775, pp. 507-518, 2019.
[6] C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat, and E. Pop, "Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition," Nano letters, vol. 16, no. 6, pp. 3824-3830, 2016.
[7] J. Kang, W. Cao, X. Xie, D. Sarkar, W. Liu, and K. Banerjee, "Graphene and beyond-graphene 2D crystals for next-generation green electronics," in Micro-and Nanotechnology Sensors, Systems, and Applications VI, 2014, vol. 9083: SPIE, pp. 20-26.
[8] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," science, vol. 306, no. 5696, pp. 666-669, 2004.
[9] H. Koga, Y. Nakamura, M. Watanabe, and T. Yoshida, "Molecular dynamics study of deposition mechanism of cubic boron nitride," Science and Technology of Advanced Materials, vol. 2, no. 2, pp. 349-356, 2001.
[10] M. Chubarov, H. Pedersen, H. Högberg, Z. Czigány, M. Garbrecht, and A. Henry, "Polytype pure sp2-BN thin films as dictated by the substrate crystal structure," Chemistry of Materials, vol. 27, no. 5, pp. 1640-1645, 2015.
[11] B. Gil et al., "Polytypes of sp2-bonded boron nitride," Crystals, vol. 12, no. 6, pp. 782, 2022.
[12] L. Vel, G. Demazeau, and J. Etourneau, "Cubic boron nitride: synthesis, physicochemical properties and applications," Materials Science and Engineering: B, vol. 10, no. 2, pp. 149-164, 1991.
[13] R. Wentorf Jr, "Preparation of semiconducting cubic boron nitride," The Journal of Chemical Physics, vol. 36, no. 8, pp. 1990-1991, 1962.
[14] O. Kutsay et al., "Studying cubic boron nitride by Raman and infrared spectroscopies," Diamond and related materials, vol. 19, no. 7-9, pp. 968-971, 2010.
[15] S. Reich, A. Ferrari, R. Arenal, A. Loiseau, I. Bello, and J. Robertson, "Resonant Raman scattering in cubic and hexagonal boron nitride," Physical Review B, vol. 71, no. 20, pp. 205201, 2005.
[16] J. Kang, L. Zhang, and S.-H. Wei, "A unified understanding of the thickness-dependent bandgap transition in hexagonal two-dimensional semiconductors," The journal of physical chemistry letters, vol. 7, no. 4, pp. 597-602, 2016.
[17] M. K. Man et al., "Protecting the properties of monolayer MoS2 on silicon based substrates with an atomically thin buffer," Scientific reports, vol. 6, no. 1, pp. 20890, 2016.
[18] C. R. Dean et al., "Boron nitride substrates for high-quality graphene electronics," Nature nanotechnology, vol. 5, no. 10, pp. 722-726, 2010.
[19] D. Pacile, J. Meyer, Ç. Girit, and A. Zettl, "The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes," Applied Physics Letters, vol. 92, no. 13, pp. 133107, 2008.
[20] W.-Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, "Structure of chemically derived mono-and few-atomic-layer boron nitride sheets," Applied Physics Letters, vol. 93, no. 22,pp. 223103, 2008.
[21] C. Zhi, Y. Bando, C. Tang, H. Kuwahara, and D. Golberg, "Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties," Advanced materials, vol. 21, no. 28, pp. 2889-2893, 2009.
[22] P. Sutter, J. Lahiri, P. Zahl, B. Wang, and E. Sutter, "Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films," Nano letters, vol. 13, no. 1, pp. 276-281, 2013.
[23] M. Gao et al., "Catalyst-free growth of two-dimensional hexagonal boron nitride few-layers on sapphire for deep ultraviolet photodetectors," Journal of Materials Chemistry C, vol. 7, no. 47, pp. 14999-15006, 2019.
[24] R. Page, J. Casamento, Y. Cho, S. Rouvimov, H. G. Xing, and D. Jena, "Rotationally aligned hexagonal boron nitride on sapphire by high-temperature molecular beam epitaxy," Physical Review Materials, vol. 3, no. 6, pp. 064001, 2019.
[25] J. Sun et al., "Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition," Chemical society reviews, vol. 47, no. 12, pp. 4242-4257, 2018.
[26] P. M. Jean-Remy, M. J. Cabral, and R. F. Davis, "Chemical vapor deposition of sp2-boron nitride on mechanically polished pyrolytic boron nitride substrates," Journal of Vacuum Science & Technology A, vol. 40, no. 4,pp. 042203, 2022.
[27] X. Chen et al., "Growth of hexagonal boron nitride films on silicon substrates by low-pressure chemical vapor deposition," Journal of Materials Science: Materials in Electronics, vol. 32, pp. 3713-3719, 2021.
[28] L. Souqui, H. Pedersen, and H. Högberg, "Chemical vapor deposition of sp2-boron nitride on Si (111) substrates from triethylboron and ammonia: Effect of surface treatments," Journal of Vacuum Science & Technology A, vol. 38, no. 4, pp. 043402, 2020.
[29] S. Frueh et al., "Pyrolytic decomposition of ammonia borane to boron nitride," Inorganic chemistry, vol. 50, no. 3, pp. 783-792, 2011.
[30] Z. R. Robinson, S. W. Schmucker, K. M. McCreary, and E. D. Cobas, "Chemical Vapor Deposition of Two-Dimensional Crystals," in Handbook of Crystal Growth: Elsevier, 2015, pp. 785-833.
[31] G. Kim, A.-R. Jang, H. Y. Jeong, Z. Lee, D. J. Kang, and H. S. Shin, "Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil," Nano letters, vol. 13, no. 4, pp. 1834-1839, 2013.
[32] X. Song et al., "A comprehensive investigation on CVD growth thermokinetics of h-BN white graphene," 2D Materials, vol. 3, no. 3, pp. 035007, 2016.
[33] G. Lu et al., "Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy," Nature communications, vol. 6, no. 1, p. 6160, 2015.
[34] R. Y. Tay et al., "Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates," Applied Physics Letters, vol. 106, no. 10, pp. 101901, 2015.
[35] S. Behura, P. Nguyen, S. Che, R. Debbarma, and V. Berry, "Large-area, transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their heterostructures with MoS2 and WS2," Journal of the American Chemical Society, vol. 137, no. 40, pp. 13060-13065, 2015.
[36] Moxfyre. "Molecular energy levels and Raman effect." https://commons.wikimedia.org/wiki/File:Raman_energy_levels.svg .
[37] "FEI Versa 3D 高解析雙束型聚焦離子束系統 FIB " 中央大學研發處. https://ncu.edu.tw/rd/tw/page/index.php?num=58&root=9 .
[38] "高解析掃描穿透式電子顯微鏡 TEM." 中央大學研發處. https://ncu.edu.tw/rd/tw/page/index.php?num=58&root=9 .
[39] "光電子/紫外光/歐傑電子/能譜儀 ESCA." 中央大學研發處. https://ncu.edu.tw/rd/tw/page/index.php?num=58&root=9 .
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2024-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明