博碩士論文 111622013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:120 、訪客IP:3.138.69.39
姓名 凌韻雅(Yun Ya Ling)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 臺灣米崙斷層之斷層帶特徵及其隱示:以 MiDAS岩芯為例
(Fault-Zone Characteristics of the Milun Fault, Taiwan, and their Implications: An Example of MiDAS borehole cores)
相關論文
★ 井測資料於臺灣中央山脈北部地熱區之解釋及應用★ 台灣淺灘沉積物組成與物源分析
★ Particle Size Distribution of the Active Fault Zone of Chelungpu Fault and Its Implication for Slipping and Energetics of Large Earthquakes★ 臺灣花蓮和平花崗片麻岩之摩擦特性及其隱示
★ Internal Structure and Permeability of the Creeping Chihshang Fault, Taiwan★ 因應高速飽和水斷層泥變形之壓力閥研製
★ 臺灣金門太武山近期閃電熔岩之礦物、微觀構造及化學特徵★ 南中國海東北部過去三萬八千年以來的古海洋變化
★ 以摩擦試驗探討斷層滑移對於微生物生存的影響★ 臺灣西南部車瓜林斷層之斷層岩石及變形機制
★ The Effect of Fluid Drainage on The Frictional Strength of Water-Saturated Kaolinite During Seismic Slip★ 以熱水力化耦合數值模擬探討快速剪切的斷層泥孔隙水壓與變形機制
★ 蛇紋岩斷層帶內的橄欖石與頑火輝石可為地震破裂指標★ 俄國西伯利亞古陸奧隆多(Olondo)綠岩帶起源及其地球動力學意義
★ 閃電化石的生成與蝕變—以金門花崗片麻岩上的閃電熔岩為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 米崙斷層在過去一百年內多次被花蓮地區的地震誘發導致破裂,因此被視為極為活躍的活動斷層。然而,米崙斷層在過去並沒有野外的露頭,缺乏對於斷層帶之觀察。因此米崙斷層鑽井研究計畫(簡稱MiDAS)於2020年成立,旨在透過科學鑽井鑽穿米崙斷層帶並且建立長期的監測系統。本研究利用偏光顯微鏡、熱場發射掃描式電子顯微鏡、穿透式電子顯微鏡、同步輻射X光繞射、拉曼光譜儀以及雷射粒徑分析儀分析MiDAS岩芯並定義米崙斷層的滑動帶。其中,MiDAS井A岩芯中522公尺處有約12公分的黑色層狀斷層泥。結果顯示,斷層帶的礦物組成相似,其中黑色泥的黏土礦物含量較高且含有碳質物以及非晶質物質。此外,我們也在黑色泥中觀察到粒徑減小以及不透光的注入脈,推測黑色泥中可能有應變集中、水-岩反應以及摩擦熱的作用。另外,本研究觀察到廣泛分布(約7公尺)的奈米尺度之纖維狀礦物。此結果暗示著斷層帶中具有熱液活動,而且可能與斷層之強化和癒合相關。本研究推論黑色層狀斷層泥為米崙斷層之滑動帶。同時也暗示米崙斷層為具有熱液活動之斷層帶。本研究所提供的斷層帶特性,說明米崙斷層在過去極為活躍之可能原因,並可供地震物理相關參數之參考。
摘要(英) The Milun fault, Taiwan, was triggered by multiple earthquakes in the Hualien region in the past one hundred years and is therefore considered to be an active fault. However, the fault-zone characteristics of the Milun fault remain unknown due to the lack of an exposed fault zone. The Milun fault Drilling and All-inclusive Sensing (MiDAS) project was designed to penetrate the active fault zone of the Milun fault and to deploy multiple monitoring systems. Here, we characterize the fault zone from the MiDAS borehole cores using microanalytical methods, including optical microscopy, field emission scanning electron microscopy, transmission electron microscopy, synchrotron X-ray diffraction, Raman spectroscopy and particle size analysis. In particular, a 12-cm black gouge layer is observed from MiDAS borehole cores from Hole-A at 522 m. The mineral assemblages of all the samples are similar but with an increase in clay mineral abundance and presence of carbonaceous material and amorphous material within the black gouge. The black gouge also contains reduced-size grains and injection vein. These observations imply strain localization, fluid-rock interaction and potential frictional heating within the black gouge. Furthermore, nanoscale fibrous structures were observed within a wide range of ~7 meters, implying the presence of hydrothermal fluid-rock interaction within the fault zone as well as possible fault strengthening and healing. The principal slip zone of the Milun fault is potentially identified within the black gouge layer. Hydrothermal activities within the fault zone were also implied and its features may explain the short recurrence interval of the Milun fault and the underlying earthquake physics.
關鍵字(中) ★ 米崙斷層
★ 滑動帶
★ 米崙斷層鑽井研究計畫
關鍵字(英) ★ Milun fault
★ slip zone
★ MiDAS
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 花蓮歷史地震 1
1.2 米崙斷層鑽井研究計畫(MiDAS) 5
1.3 前人研究 8
1.4 研究動機與目的 10
第二章 研究材料與方法 11
2.1 地質背景 11
2.2 研究材料 14
2.3 研究方法總論 17
2.4 實驗儀器與樣品製備 17
2.4.1 薄片製作步驟 17
2.4.2 偏光顯微鏡 19
2.4.3 熱場發射掃描式電子顯微鏡(FESEM) 20
2.4.4 穿透式電子顯微鏡(TEM) 21
2.4.5 X光繞射儀(XRD) 22
2.4.6 拉曼光譜儀 24
2.4.7 雷射粒徑分析儀 25
第三章 結果 26
3.1 偏光顯微鏡 26
3.2 掃描式電子顯微鏡 28
3.3 穿透式電子顯微鏡 32
3.4 X光繞射儀 33
3.5 拉曼光譜分析 36
3.6 粒徑分析 39
第四章 討論 42
4.1 黑色層狀斷層泥為米崙斷層滑動帶 42
4.2 纖維狀礦物之成因與隱示 48
第五章 結論與建議 50
參考文獻 52
參考文獻 Agrinier, P., Deutsch, A., Schärer, U., & Martinez, I. (2001). Fast back-reactions of shock-released CO 2 from carbonates: An experimental approach. Geochimica et Cosmochimica Acta, 65(15), 2615–2632. https://doi.org/10.1016/S0016-7037(01)00617-2
Atkinson, B. K. (1980). Stress corrosion and the rate-dependent tensile failure of a fine-grained quartz rock. Tectonophysics, 65(3–4), 281–290. https://doi.org/10.1016/0040-1951(80)90078-5
Beyssac, O., Goffé, B., Chopin, C., & Rouzaud, J. N. (2002). Raman spectra of carbonaceous material in metasediments: A new geothermometer. Journal of Metamorphic Geology, 20(9), 859–871. https://doi.org/10.1046/j.1525-1314.2002.00408.x
Beyssac, O., Goffé, B., Petitet, J.-P., Froigneux, E., Moreau, M., & Rouzaud, J.-N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2267–2276. https://doi.org/10.1016/S1386-1425(03)00070-2
Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
Chester, F. M., & Chester, J. S. (1998). Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics, 295(1–2), 199–221. https://doi.org/10.1016/S0040-1951(98)00121-8
Chester, F. M., & Logan, J. M. (1986). Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure and Applied Geophysics PAGEOPH, 124(1–2), 79–106. https://doi.org/10.1007/BF00875720
Choi, J.-H., Edwards, P., Ko, K., & Kim, Y.-S. (2016). Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152, 70–87. https://doi.org/10.1016/j.earscirev.2015.11.006
Crespo-Feo, E., Luque, J., Barrenechea, J., & Rodas, M. (2005). Mechanical graphite transport in fault zones and the formation of graphite veins. Mineralogical Magazine - MINER MAG, 69, 463–470. https://doi.org/10.1180/0026461056940266
Delle Piane, C., Piazolo, S., Timms, N. E., Luzin, V., Saunders, M., Bourdet, J., Giwelli, A., Ben Clennell, M., Kong, C., Rickard, W. D. A., & Verrall, M. (2018). Generation of amorphous carbon and crystallographic texture during low-temperature subseismic slip in calcite fault gouge. Geology, 46(2), 163–166. https://doi.org/10.1130/G39584.1
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., & Shimamoto, T. (2006). Natural and Experimental Evidence of Melt Lubrication of Faults During Earthquakes. Science, 311(5761), 647–649. https://doi.org/10.1126/science.1121012
Di Toro, G., Pennacchioni, G., & Nielsen, S. (2009). Chapter 5 Pseudotachylytes and Earthquake Source Mechanics. In International Geophysics (Vol. 94, pp. 87–133). Elsevier. https://doi.org/10.1016/S0074-6142(08)00005-3
Dickinson, J. T., Jensen, L. C., Langford, S. C., Rosenberg, P. E., & Blanchard, D. L. (1991). CO2 emission accompanying the fracture of calcite. Physics and Chemistry of Minerals, 18(5). https://doi.org/10.1007/BF00200189
Dieterich, J. H., & Kilgore, B. D. (1994). Direct observation of frictional contacts: New insights for state-dependent properties. Pure and Applied Geophysics, 143(1), 283–302. https://doi.org/10.1007/BF00874332
Frondel, C. (1962). Dana’s System of Mineralogy, 7th Edition: Vol. III: Silica Minerals. (John Wiley).
Furuichi, H., Ujiie, K., Kouketsu, Y., Saito, T., Tsutsumi, A., & Wallis, S. (2015). Vitrinite reflectance and Raman spectra of carbonaceous material as indicators of frictional heating on faults: Constraints from friction experiments. Earth and Planetary Science Letters, 424, 191–200. https://doi.org/10.1016/j.epsl.2015.05.037
Han, R., Shimamoto, T., Ando, J., & Ree, J.-H. (2007). Seismic slip record in carbonate-bearing fault zones: An insight from high-velocity friction experiments on siderite gouge. Geology, 35(12), 1131. https://doi.org/10.1130/G24106A.1
Hirose, T., Kawagucci, S., & Suzuki, K. (2011). Mechanoradical H 2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere: H 2 GENERATION DURING EARTHQUAKES. Geophysical Research Letters, 38(17), n/a-n/a. https://doi.org/10.1029/2011GL048850
Huang, S.-Y., Yen, J.-Y., Wu, B.-L., Yen, I.-C., & Chuang, R. Y. (2019). Investigating the Milun Fault: The coseismic surface rupture zone of the 2018/02/06 ML 6.2 Hualien earthquake, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 311–335. https://doi.org/10.3319/TAO.2018.12.09.03
Janssen, C., Wirth, R., Wenk, H.-R., Morales, L., Naumann, R., Kienast, M., Song, S.-R., & Dresen, G. (2014). Faulting processes in active faults – Evidences from TCDP and SAFOD drill core samples. Journal of Structural Geology, 65, 100–116. https://doi.org/10.1016/j.jsg.2014.04.004
Jones, R. M., & Hillis, R. R. (2003). An integrated, quantitative approach to assessing fault-seal risk. AAPG Bulletin, 87(3), 507–524. https://doi.org/10.1306/10100201135
Karfunkel, J., Addad, J., Banko, A. G., Hadrian, W., & Hoover, D. B. (2001). Electromechanical disintegration—An important weathering process. Zeitschrift Für Geomorphologie, 45(3), 345–357. https://doi.org/10.1127/zfg/45/2001/345
Kuo, L., Song, S., Yeh, E., & Chen, H. (2009). Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical Research Letters, 36(18), 2009GL039269. https://doi.org/10.1029/2009GL039269
Kuo, L.-W., Di Felice, F., Spagnuolo, E., Di Toro, G., Song, S.-R., Aretusini, S., Li, H., Suppe, J., Si, J., & Wen, C.-Y. (2017). Fault gouge graphitization as evidence of past seismic slip. Geology, 45(11), 979–982. https://doi.org/10.1130/G39295.1
Kuo, L.-W., Hsiao, H.-C., Song, S.-R., Sheu, H.-S., & Suppe, J. (2014). Coseismic thickness of principal slip zone from the Taiwan Chelungpu fault Drilling Project-A (TCDP-A) and correlated fracture energy. Tectonophysics, 619–620, 29–35. https://doi.org/10.1016/j.tecto.2013.07.006
Kuo, L.-W., Li, H., Smith, S. A. F., Di Toro, G., Suppe, J., Song, S.-R., Nielsen, S., Sheu, H.-S., & Si, J. (2014). Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 42(1), 47–50. https://doi.org/10.1130/G34862.1
Li, H., Wang, H., Xu, Z., Si, J., Pei, J., Li, T., Huang, Y., Song, S.-R., Kuo, L.-W., Sun, Z., Chevalier, M.-L., & Liu, D. (2013). Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584, 23–42. https://doi.org/10.1016/j.tecto.2012.08.021
Li, H., Wang, H., Yang, G., Xu, Z., Li, T., Si, J., Sun, Z., Huang, Y., Chevalier, M.-L., Zhang, W., & Zhang, J. (2016). Lithological and structural characterization of the Longmen Shan fault belt from the 3rd hole of the Wenchuan Earthquake Fault Scientific Drilling project (WFSD-3). International Journal of Earth Sciences, 105(8), 2253–2272. https://doi.org/10.1007/s00531-015-1285-9
Luque, F. J., Pasteris, J. D., Wopenka, B., Rodas, M., & Barrenechea, J. F. (1998). Natural fluid-deposited graphite; mineralogical characteristics and mechanisms of formation. American Journal of Science, 298(6), 471–498. https://doi.org/10.2475/ajs.298.6.471
Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., & Wu, H.-Y. (2006). Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118), 473–476. https://doi.org/10.1038/nature05253
Ma, K.-F., von Specht, S., Kuo, L.-W., Huang, H.-H., Lin, C.-R., Lin, C.-J., Ku, C.-S., Wu, E.-S., Wang, C.-Y., Chang, W.-Y., & Jousset, P. (2024). Broad-band strain amplification in an asymmetric fault zone observed from borehole optical fiber and core. Communications Earth and Environment. https://doi.org/10.1038/s43247-024-01558-6
Martinelli, G., & Plescia, P. (2004). Mechanochemical dissociation of calcium carbonate: Laboratory data and relation to natural emissions of CO2. Physics of the Earth and Planetary Interiors, 142(3–4), 205–214. https://doi.org/10.1016/j.pepi.2003.12.009
MiDAS Project. (2023). E-DREaM. https://e-dream.tw/midas_project/
Niemeijer, A., Di Toro, G., Griffith, W. A., Bistacchi, A., Smith, S. A. F., & Nielsen, S. (2012). Inferring earthquake physics and chemistry using an integrated field and laboratory approach. Journal of Structural Geology, 39, 2–36. https://doi.org/10.1016/j.jsg.2012.02.018
Oohashi, K., Han, R., Hirose, T., Shimamoto, T., Omura, K., & Matsuda, T. (2014). Carbon-forming reactions under a reducing atmosphere during seismic fault slip. Geology, 42(9), 787–790. https://doi.org/10.1130/G35703.1
Oohashi, K., Hirose, T., Kobayashi, K., & Shimamoto, T. (2012). The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep. Journal of Structural Geology, 38, 39–50. https://doi.org/10.1016/j.jsg.2011.10.011
Ozawa, K., & Takizawa, S. (2007). Amorphous material formed by the mechanochemical effect in natural pseudotachylyte of crushing origin: A case study of the Iida-Matsukawa Fault, Nagano Prefecture, Central Japan. Journal of Structural Geology, 29(11), 1855–1869. https://doi.org/10.1016/j.jsg.2007.08.008
Pec, M., Stünitz, H., Heilbronner, R., & Drury, M. (2016). Semi‐brittle flow of granitoid fault rocks in experiments. Journal of Geophysical Research: Solid Earth, 121(3), 1677–1705. https://doi.org/10.1002/2015JB012513
Pec, M., Stünitz, H., Heilbronner, R., Drury, M., & De Capitani, C. (2012). Origin of pseudotachylites in slow creep experiments. Earth and Planetary Science Letters, 355–356, 299–310. https://doi.org/10.1016/j.epsl.2012.09.004
Sibson, R. H. (1975). Generation of Pseudotachylyte by Ancient Seismic Faulting. Geophysical Journal International, 43(3), 775–794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x
Sibson, R. H., Moore, J. Mc. M., & Rankin, A. H. (1975). Seismic pumping—A hydrothermal fluid transport mechanism. Journal of the Geological Society, 131(6), 653–659. https://doi.org/10.1144/gsjgs.131.6.0653
Solum, J. G., Van Der Pluijm, B. A., & Peacor, D. R. (2005). Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, 27(9), 1563–1576. https://doi.org/10.1016/j.jsg.2005.05.002
Toy, V. G., Mitchell, T. M., Druiventak, A., & Wirth, R. (2015). Crystallographic preferred orientations may develop in nanocrystalline materials on fault planes due to surface energy interactions. Geochemistry, Geophysics, Geosystems, 16(8), 2549–2563. https://doi.org/10.1002/2015GC005857
Unterlass, M. (2017). Geomimetics and Extreme Biomimetics Inspired by Hydrothermal Systems—What Can We Learn from Nature for Materials Synthesis? Biomimetics, 2(4), 8. https://doi.org/10.3390/biomimetics2020008
Vanorio, T., Chung, J., Siman-Tov, S., & Nur, A. (2023). Hydrothermal formation of fibrous mineral structures: The role on strength and mode of failure. Frontiers in Earth Science, 10, 1052447. https://doi.org/10.3389/feart.2022.1052447
Vanorio, T., & Kanitpanyacharoen, W. (2015). Rock physics of fibrous rocks akin to Roman concrete explains uplifts at Campi Flegrei Caldera. Science, 349(6248), 617–621. https://doi.org/10.1126/science.aab1292
Verberne, B. A., Plümper, O., Matthijs De Winter, D. A., & Spiers, C. J. (2014). Superplastic nanofibrous slip zones control seismogenic fault friction. Science, 346(6215), 1342–1344. https://doi.org/10.1126/science.1259003
Viti, C., Collettini, C., Tesei, T., Tarling, M., & Smith, S. (2018). Deformation Processes, Textural Evolution and Weakening in Retrograde Serpentinites. Minerals, 8(6), 241. https://doi.org/10.3390/min8060241
Vrolijk, P., & van der Pluijm, B. A. (1999). Clay gouge. Journal of Structural Geology, 21(8), 1039–1048. https://doi.org/10.1016/S0191-8141(99)00103-0
Wakita, H., Nakamura, Y., Kita, I., Fujii, N., & Notsu, K. (1980). Hydrogen Release: New Indicator of Fault Activity. Science, 210(4466), 188–190. https://doi.org/10.1126/science.210.4466.188
Wenk, H. R. (1978). Are pseudotachylites products of fracture or fusion? Geology, 6(8), 507. https://doi.org/10.1130/0091-7613(1978)6<507:APPOFO>2.0.CO;2
Wu, B.-L., Yen, J.-Y., Huang, S.-Y., Kuo, Y.-T., & Chang, W.-Y. (2019). Surface deformation of 0206 Hualien earthquake revealed by the integrated network of RTK GPS. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 301–310. https://doi.org/10.3319/TAO.2019.05.27.01
Wu, W., Kuo, L., Ku, C., Chiang, C., Sheu, H., Aprilniadi, T. D., & Dong, J. (2020). Mixed‐Mode Formation of Amorphous Materials in the Creeping Zone of the Chihshang Fault, Taiwan, and Implications for Deformation Style. Journal of Geophysical Research: Solid Earth, 125(6), e2020JB019862. https://doi.org/10.1029/2020JB019862
Yielding, G. (1997). Quantitative Fault Seal Prediction. AAPG Bulletin, 81 (1997). https://doi.org/10.1306/522B498D-1727-11D7-8645000102C1865D
Yund, R. A., Blanpied, M. L., Tullis, T. E., & Weeks, J. D. (1990). Amorphous material in high strain experimental fault gouges. Journal of Geophysical Research: Solid Earth, 95(B10), 15589–15602. https://doi.org/10.1029/JB095iB10p15589
Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A., & Kourkoutis, L. F. (2018). Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature, 560(7718), 345–349. https://doi.org/10.1038/s41586-018-0397-3
Zoback, M., Hickman, S., & Ellsworth, W. (2010). Scientific Drilling Into the San Andreas Fault Zone. Eos, Transactions American Geophysical Union, 91(22), 197–199. https://doi.org/10.1029/2010EO220001
交通部中央氣象局. (2018, February 6). 地震測報 (2018/02/06-2023/02/06) [服務]. 交通部中央氣象局; 交通部中央氣象局. https://scweb.cwa.gov.tw/zh-tw/earthquake/imgs/2018020623504162022
交通部中央氣象署. (2024, April 29). 地震—中央氣象署全球資訊網 [服務]. 交通部中央氣象署; 交通部中央氣象署. https://www.cwa.gov.tw/V8/C/E/EQ/EQ113019-0403-075809.html
臺灣省氣象所(1952)民國四十年地震報告,共83頁。
劉啟清(1988)臺灣地區地殼變動對驗潮紀錄的影響。第二屆臺灣地區地球物理研討會論文集,第324-331頁。
林朝棨(1957)臺灣地形。臺灣省文獻委員會,共423頁。
楊貴三(1986)臺灣活斷層的地形學研究-特論活斷層與地形面的關係。私立中國文化大學地學研究所博士論文,共178頁。
鍾令和、石同生、劉彥求、許文靈、謝中敏、吳文綜(2004)米崙斷層調查。活動斷層精查報告,網路版。
林啟文、陳文山、劉彥求、陳柏村(2009)米崙斷層。經濟部中央地質調查所特刊,第23號,第11-20頁。
徐鐵良(1956)台灣東部海岸山脈地質。臺灣省地質調查所彙刊,第8號,第15-63頁。
謝孟龍、鄧屬予(1994)米崙礫岩的岩相及沉積環境。地質,14:1卷,第201-217頁。
林朝棨(1962)花蓮地方的第四系-臺灣之第四紀研究(三)。國家長期發展科學委員會研究報告,共42頁。
廖宏祥(2006)米崙斷層淺層震測研究。國立中正大學地震研究所碩士論文,共82頁。
張舜傑(1994)以淺層反射震測法調查花蓮市地區地下地質構造。國立中央大學地球物理研究所碩士論文,共109頁。
指導教授 郭力維(Li-Wei Kuo) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明