參考文獻 |
Agrinier, P., Deutsch, A., Schärer, U., & Martinez, I. (2001). Fast back-reactions of shock-released CO 2 from carbonates: An experimental approach. Geochimica et Cosmochimica Acta, 65(15), 2615–2632. https://doi.org/10.1016/S0016-7037(01)00617-2
Atkinson, B. K. (1980). Stress corrosion and the rate-dependent tensile failure of a fine-grained quartz rock. Tectonophysics, 65(3–4), 281–290. https://doi.org/10.1016/0040-1951(80)90078-5
Beyssac, O., Goffé, B., Chopin, C., & Rouzaud, J. N. (2002). Raman spectra of carbonaceous material in metasediments: A new geothermometer. Journal of Metamorphic Geology, 20(9), 859–871. https://doi.org/10.1046/j.1525-1314.2002.00408.x
Beyssac, O., Goffé, B., Petitet, J.-P., Froigneux, E., Moreau, M., & Rouzaud, J.-N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2267–2276. https://doi.org/10.1016/S1386-1425(03)00070-2
Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
Chester, F. M., & Chester, J. S. (1998). Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics, 295(1–2), 199–221. https://doi.org/10.1016/S0040-1951(98)00121-8
Chester, F. M., & Logan, J. M. (1986). Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure and Applied Geophysics PAGEOPH, 124(1–2), 79–106. https://doi.org/10.1007/BF00875720
Choi, J.-H., Edwards, P., Ko, K., & Kim, Y.-S. (2016). Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152, 70–87. https://doi.org/10.1016/j.earscirev.2015.11.006
Crespo-Feo, E., Luque, J., Barrenechea, J., & Rodas, M. (2005). Mechanical graphite transport in fault zones and the formation of graphite veins. Mineralogical Magazine - MINER MAG, 69, 463–470. https://doi.org/10.1180/0026461056940266
Delle Piane, C., Piazolo, S., Timms, N. E., Luzin, V., Saunders, M., Bourdet, J., Giwelli, A., Ben Clennell, M., Kong, C., Rickard, W. D. A., & Verrall, M. (2018). Generation of amorphous carbon and crystallographic texture during low-temperature subseismic slip in calcite fault gouge. Geology, 46(2), 163–166. https://doi.org/10.1130/G39584.1
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., & Shimamoto, T. (2006). Natural and Experimental Evidence of Melt Lubrication of Faults During Earthquakes. Science, 311(5761), 647–649. https://doi.org/10.1126/science.1121012
Di Toro, G., Pennacchioni, G., & Nielsen, S. (2009). Chapter 5 Pseudotachylytes and Earthquake Source Mechanics. In International Geophysics (Vol. 94, pp. 87–133). Elsevier. https://doi.org/10.1016/S0074-6142(08)00005-3
Dickinson, J. T., Jensen, L. C., Langford, S. C., Rosenberg, P. E., & Blanchard, D. L. (1991). CO2 emission accompanying the fracture of calcite. Physics and Chemistry of Minerals, 18(5). https://doi.org/10.1007/BF00200189
Dieterich, J. H., & Kilgore, B. D. (1994). Direct observation of frictional contacts: New insights for state-dependent properties. Pure and Applied Geophysics, 143(1), 283–302. https://doi.org/10.1007/BF00874332
Frondel, C. (1962). Dana’s System of Mineralogy, 7th Edition: Vol. III: Silica Minerals. (John Wiley).
Furuichi, H., Ujiie, K., Kouketsu, Y., Saito, T., Tsutsumi, A., & Wallis, S. (2015). Vitrinite reflectance and Raman spectra of carbonaceous material as indicators of frictional heating on faults: Constraints from friction experiments. Earth and Planetary Science Letters, 424, 191–200. https://doi.org/10.1016/j.epsl.2015.05.037
Han, R., Shimamoto, T., Ando, J., & Ree, J.-H. (2007). Seismic slip record in carbonate-bearing fault zones: An insight from high-velocity friction experiments on siderite gouge. Geology, 35(12), 1131. https://doi.org/10.1130/G24106A.1
Hirose, T., Kawagucci, S., & Suzuki, K. (2011). Mechanoradical H 2 generation during simulated faulting: Implications for an earthquake-driven subsurface biosphere: H 2 GENERATION DURING EARTHQUAKES. Geophysical Research Letters, 38(17), n/a-n/a. https://doi.org/10.1029/2011GL048850
Huang, S.-Y., Yen, J.-Y., Wu, B.-L., Yen, I.-C., & Chuang, R. Y. (2019). Investigating the Milun Fault: The coseismic surface rupture zone of the 2018/02/06 ML 6.2 Hualien earthquake, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 311–335. https://doi.org/10.3319/TAO.2018.12.09.03
Janssen, C., Wirth, R., Wenk, H.-R., Morales, L., Naumann, R., Kienast, M., Song, S.-R., & Dresen, G. (2014). Faulting processes in active faults – Evidences from TCDP and SAFOD drill core samples. Journal of Structural Geology, 65, 100–116. https://doi.org/10.1016/j.jsg.2014.04.004
Jones, R. M., & Hillis, R. R. (2003). An integrated, quantitative approach to assessing fault-seal risk. AAPG Bulletin, 87(3), 507–524. https://doi.org/10.1306/10100201135
Karfunkel, J., Addad, J., Banko, A. G., Hadrian, W., & Hoover, D. B. (2001). Electromechanical disintegration—An important weathering process. Zeitschrift Für Geomorphologie, 45(3), 345–357. https://doi.org/10.1127/zfg/45/2001/345
Kuo, L., Song, S., Yeh, E., & Chen, H. (2009). Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical Research Letters, 36(18), 2009GL039269. https://doi.org/10.1029/2009GL039269
Kuo, L.-W., Di Felice, F., Spagnuolo, E., Di Toro, G., Song, S.-R., Aretusini, S., Li, H., Suppe, J., Si, J., & Wen, C.-Y. (2017). Fault gouge graphitization as evidence of past seismic slip. Geology, 45(11), 979–982. https://doi.org/10.1130/G39295.1
Kuo, L.-W., Hsiao, H.-C., Song, S.-R., Sheu, H.-S., & Suppe, J. (2014). Coseismic thickness of principal slip zone from the Taiwan Chelungpu fault Drilling Project-A (TCDP-A) and correlated fracture energy. Tectonophysics, 619–620, 29–35. https://doi.org/10.1016/j.tecto.2013.07.006
Kuo, L.-W., Li, H., Smith, S. A. F., Di Toro, G., Suppe, J., Song, S.-R., Nielsen, S., Sheu, H.-S., & Si, J. (2014). Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 42(1), 47–50. https://doi.org/10.1130/G34862.1
Li, H., Wang, H., Xu, Z., Si, J., Pei, J., Li, T., Huang, Y., Song, S.-R., Kuo, L.-W., Sun, Z., Chevalier, M.-L., & Liu, D. (2013). Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584, 23–42. https://doi.org/10.1016/j.tecto.2012.08.021
Li, H., Wang, H., Yang, G., Xu, Z., Li, T., Si, J., Sun, Z., Huang, Y., Chevalier, M.-L., Zhang, W., & Zhang, J. (2016). Lithological and structural characterization of the Longmen Shan fault belt from the 3rd hole of the Wenchuan Earthquake Fault Scientific Drilling project (WFSD-3). International Journal of Earth Sciences, 105(8), 2253–2272. https://doi.org/10.1007/s00531-015-1285-9
Luque, F. J., Pasteris, J. D., Wopenka, B., Rodas, M., & Barrenechea, J. F. (1998). Natural fluid-deposited graphite; mineralogical characteristics and mechanisms of formation. American Journal of Science, 298(6), 471–498. https://doi.org/10.2475/ajs.298.6.471
Ma, K.-F., Tanaka, H., Song, S.-R., Wang, C.-Y., Hung, J.-H., Tsai, Y.-B., Mori, J., Song, Y.-F., Yeh, E.-C., Soh, W., Sone, H., Kuo, L.-W., & Wu, H.-Y. (2006). Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444(7118), 473–476. https://doi.org/10.1038/nature05253
Ma, K.-F., von Specht, S., Kuo, L.-W., Huang, H.-H., Lin, C.-R., Lin, C.-J., Ku, C.-S., Wu, E.-S., Wang, C.-Y., Chang, W.-Y., & Jousset, P. (2024). Broad-band strain amplification in an asymmetric fault zone observed from borehole optical fiber and core. Communications Earth and Environment. https://doi.org/10.1038/s43247-024-01558-6
Martinelli, G., & Plescia, P. (2004). Mechanochemical dissociation of calcium carbonate: Laboratory data and relation to natural emissions of CO2. Physics of the Earth and Planetary Interiors, 142(3–4), 205–214. https://doi.org/10.1016/j.pepi.2003.12.009
MiDAS Project. (2023). E-DREaM. https://e-dream.tw/midas_project/
Niemeijer, A., Di Toro, G., Griffith, W. A., Bistacchi, A., Smith, S. A. F., & Nielsen, S. (2012). Inferring earthquake physics and chemistry using an integrated field and laboratory approach. Journal of Structural Geology, 39, 2–36. https://doi.org/10.1016/j.jsg.2012.02.018
Oohashi, K., Han, R., Hirose, T., Shimamoto, T., Omura, K., & Matsuda, T. (2014). Carbon-forming reactions under a reducing atmosphere during seismic fault slip. Geology, 42(9), 787–790. https://doi.org/10.1130/G35703.1
Oohashi, K., Hirose, T., Kobayashi, K., & Shimamoto, T. (2012). The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep. Journal of Structural Geology, 38, 39–50. https://doi.org/10.1016/j.jsg.2011.10.011
Ozawa, K., & Takizawa, S. (2007). Amorphous material formed by the mechanochemical effect in natural pseudotachylyte of crushing origin: A case study of the Iida-Matsukawa Fault, Nagano Prefecture, Central Japan. Journal of Structural Geology, 29(11), 1855–1869. https://doi.org/10.1016/j.jsg.2007.08.008
Pec, M., Stünitz, H., Heilbronner, R., & Drury, M. (2016). Semi‐brittle flow of granitoid fault rocks in experiments. Journal of Geophysical Research: Solid Earth, 121(3), 1677–1705. https://doi.org/10.1002/2015JB012513
Pec, M., Stünitz, H., Heilbronner, R., Drury, M., & De Capitani, C. (2012). Origin of pseudotachylites in slow creep experiments. Earth and Planetary Science Letters, 355–356, 299–310. https://doi.org/10.1016/j.epsl.2012.09.004
Sibson, R. H. (1975). Generation of Pseudotachylyte by Ancient Seismic Faulting. Geophysical Journal International, 43(3), 775–794. https://doi.org/10.1111/j.1365-246X.1975.tb06195.x
Sibson, R. H., Moore, J. Mc. M., & Rankin, A. H. (1975). Seismic pumping—A hydrothermal fluid transport mechanism. Journal of the Geological Society, 131(6), 653–659. https://doi.org/10.1144/gsjgs.131.6.0653
Solum, J. G., Van Der Pluijm, B. A., & Peacor, D. R. (2005). Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, 27(9), 1563–1576. https://doi.org/10.1016/j.jsg.2005.05.002
Toy, V. G., Mitchell, T. M., Druiventak, A., & Wirth, R. (2015). Crystallographic preferred orientations may develop in nanocrystalline materials on fault planes due to surface energy interactions. Geochemistry, Geophysics, Geosystems, 16(8), 2549–2563. https://doi.org/10.1002/2015GC005857
Unterlass, M. (2017). Geomimetics and Extreme Biomimetics Inspired by Hydrothermal Systems—What Can We Learn from Nature for Materials Synthesis? Biomimetics, 2(4), 8. https://doi.org/10.3390/biomimetics2020008
Vanorio, T., Chung, J., Siman-Tov, S., & Nur, A. (2023). Hydrothermal formation of fibrous mineral structures: The role on strength and mode of failure. Frontiers in Earth Science, 10, 1052447. https://doi.org/10.3389/feart.2022.1052447
Vanorio, T., & Kanitpanyacharoen, W. (2015). Rock physics of fibrous rocks akin to Roman concrete explains uplifts at Campi Flegrei Caldera. Science, 349(6248), 617–621. https://doi.org/10.1126/science.aab1292
Verberne, B. A., Plümper, O., Matthijs De Winter, D. A., & Spiers, C. J. (2014). Superplastic nanofibrous slip zones control seismogenic fault friction. Science, 346(6215), 1342–1344. https://doi.org/10.1126/science.1259003
Viti, C., Collettini, C., Tesei, T., Tarling, M., & Smith, S. (2018). Deformation Processes, Textural Evolution and Weakening in Retrograde Serpentinites. Minerals, 8(6), 241. https://doi.org/10.3390/min8060241
Vrolijk, P., & van der Pluijm, B. A. (1999). Clay gouge. Journal of Structural Geology, 21(8), 1039–1048. https://doi.org/10.1016/S0191-8141(99)00103-0
Wakita, H., Nakamura, Y., Kita, I., Fujii, N., & Notsu, K. (1980). Hydrogen Release: New Indicator of Fault Activity. Science, 210(4466), 188–190. https://doi.org/10.1126/science.210.4466.188
Wenk, H. R. (1978). Are pseudotachylites products of fracture or fusion? Geology, 6(8), 507. https://doi.org/10.1130/0091-7613(1978)6<507:APPOFO>2.0.CO;2
Wu, B.-L., Yen, J.-Y., Huang, S.-Y., Kuo, Y.-T., & Chang, W.-Y. (2019). Surface deformation of 0206 Hualien earthquake revealed by the integrated network of RTK GPS. Terrestrial, Atmospheric and Oceanic Sciences, 30(3), 301–310. https://doi.org/10.3319/TAO.2019.05.27.01
Wu, W., Kuo, L., Ku, C., Chiang, C., Sheu, H., Aprilniadi, T. D., & Dong, J. (2020). Mixed‐Mode Formation of Amorphous Materials in the Creeping Zone of the Chihshang Fault, Taiwan, and Implications for Deformation Style. Journal of Geophysical Research: Solid Earth, 125(6), e2020JB019862. https://doi.org/10.1029/2020JB019862
Yielding, G. (1997). Quantitative Fault Seal Prediction. AAPG Bulletin, 81 (1997). https://doi.org/10.1306/522B498D-1727-11D7-8645000102C1865D
Yund, R. A., Blanpied, M. L., Tullis, T. E., & Weeks, J. D. (1990). Amorphous material in high strain experimental fault gouges. Journal of Geophysical Research: Solid Earth, 95(B10), 15589–15602. https://doi.org/10.1029/JB095iB10p15589
Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A., & Kourkoutis, L. F. (2018). Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature, 560(7718), 345–349. https://doi.org/10.1038/s41586-018-0397-3
Zoback, M., Hickman, S., & Ellsworth, W. (2010). Scientific Drilling Into the San Andreas Fault Zone. Eos, Transactions American Geophysical Union, 91(22), 197–199. https://doi.org/10.1029/2010EO220001
交通部中央氣象局. (2018, February 6). 地震測報 (2018/02/06-2023/02/06) [服務]. 交通部中央氣象局; 交通部中央氣象局. https://scweb.cwa.gov.tw/zh-tw/earthquake/imgs/2018020623504162022
交通部中央氣象署. (2024, April 29). 地震—中央氣象署全球資訊網 [服務]. 交通部中央氣象署; 交通部中央氣象署. https://www.cwa.gov.tw/V8/C/E/EQ/EQ113019-0403-075809.html
臺灣省氣象所(1952)民國四十年地震報告,共83頁。
劉啟清(1988)臺灣地區地殼變動對驗潮紀錄的影響。第二屆臺灣地區地球物理研討會論文集,第324-331頁。
林朝棨(1957)臺灣地形。臺灣省文獻委員會,共423頁。
楊貴三(1986)臺灣活斷層的地形學研究-特論活斷層與地形面的關係。私立中國文化大學地學研究所博士論文,共178頁。
鍾令和、石同生、劉彥求、許文靈、謝中敏、吳文綜(2004)米崙斷層調查。活動斷層精查報告,網路版。
林啟文、陳文山、劉彥求、陳柏村(2009)米崙斷層。經濟部中央地質調查所特刊,第23號,第11-20頁。
徐鐵良(1956)台灣東部海岸山脈地質。臺灣省地質調查所彙刊,第8號,第15-63頁。
謝孟龍、鄧屬予(1994)米崙礫岩的岩相及沉積環境。地質,14:1卷,第201-217頁。
林朝棨(1962)花蓮地方的第四系-臺灣之第四紀研究(三)。國家長期發展科學委員會研究報告,共42頁。
廖宏祥(2006)米崙斷層淺層震測研究。國立中正大學地震研究所碩士論文,共82頁。
張舜傑(1994)以淺層反射震測法調查花蓮市地區地下地質構造。國立中央大學地球物理研究所碩士論文,共109頁。 |