博碩士論文 111226041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:147 、訪客IP:3.144.224.74
姓名 黃郁淇(Yu-Ci Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 多區域 3D 電極結構之大孔徑液晶透鏡設計與分析
(Design and analysis of large-aperture liquid crystal lenses by multi-zone and three-dimensional electrode structures)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-23以後開放)
摘要(中) 本論文進行多區域3D電極結構之大孔徑液晶透鏡的研究,主要包括設計與模擬、液晶透鏡元件製作以及液晶透鏡元件實驗量測與分析三個部分。首先,設定模擬目標的屈光度、孔徑大小及液晶層厚度,並通過梯度折射率透鏡(Gradient-Index Lens, 簡稱GRIN lens)概念計算該透鏡之理論相位分佈,根據菲涅耳透鏡(Fresnel Lens)切分原理,以波長的整數倍切分不同半徑位置上的相位,設計出具有18個區域的3D曲面電極之液晶透鏡。而後使用TechWiz LCD 3D (SANAYI)液晶光學模擬軟體對設計之液晶透鏡進行相位分佈的模擬,並匹配18個電極區域各自所對應之函數,透過匹配結果製作出具有3D結構之模具,並利用NBA107聚合物材料將結構轉印至玻璃基板上,接著將ITO電極均勻濺鍍於結構上形成3D電極,再次使用NBA107將電極凹面處填平,經摩擦配向後與另一具有ITO電極之平面玻璃基板組合,並注入向列型液晶E7完成液晶透鏡元件之製作。最後藉由各項實驗及量測評估此液晶透鏡之實際效果,包含偏光顯微鏡下液晶分子的排列、液晶透鏡之焦距量測、實際變焦效果觀察、反應時間量測、同心圓環觀測、出射光偏振態變化之討論等。藉由分析實驗結果,驗證本研究之液晶透鏡元件可通過施加不同電壓調整其屈光能力,其在施加5 Vpp之電壓時具有最佳屈光度為2.63 D,隨著電壓增加,其屈光度也會隨之下降,結果符合液晶透鏡的調焦理論。
摘要(英) This study investigates large-aperture liquid crystal (LC) lenses using multi-zone and three-dimensional electrode structures. The study is primarily divided into three main parts, including design and simulation, fabrication of LC lens, and experimental measurement and analysis. First, the simulation targets for refractive power, aperture size, and liquid crystal layer thickness were designed through theoretical calculation. The theoretical phase distribution of the lens was calculated using the concept of a gradient-index (GRIN) lens. By applying the principle of Fresnel lens segmentation, the phase at different radial positions was divided into integer multiples of the wavelength, resulting in the design of an LC lens with 18-zone and three-dimensional electrodes.
The LC optical simulation software TechWiz LCD 3D (SANAYI) was then employed to simulate the phase distribution of the designed LC lens, and the corresponding functions for each of the 18-zone and 3D electrode zones were matched. Based on the matched results, a mold with a 3D structure was fabricated, and the structures were transferred onto a glass substrate using NBA107 polymer material. An ITO electrode film was uniformly sputtered onto the structure to form the 3D electrodes. NBA107 was then used again to fill the concave areas of the electrodes to flatten the surface. After rubbing alignment, the substrate with the prepared structures was assembled with another glass substrate coated with an ITO electrode film, and nematic LC E7 was then injected into the cell to complete the LC lens. Finally, the performance of the LC lens was evaluated through various experiments and measurements. These included observing the alignment of LC molecules under a polarizing optical microscope, measuring actual focal length, examining the actual focusing effect of the LC lens, measuring response times, observing concentric rings, and discussing on the change of polarization state of emitted light. By analyzing the experimental results, this study validates that we can adjust the LC lens’s optical power by applying different voltages. At an applied voltage of 5 Vpp, it achieves an optical power of 2.63 D. Additionally. the optical power decreases with the increase of the applied voltage, conforming to the focusing theory of LC lenses.
關鍵字(中) ★ 多區域
★ 曲面電極
★ 大孔徑
★ 液晶透鏡
關鍵字(英) ★ Multi-zone
★ Curved electrodes
★ Large aperture
★ Liquid crystal lens
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiii
符號說明 xiv
第一章 緒論 1
§1-1 前言 1
§1-2 研究動機 1
§1-3 文獻回顧 2
§1-4 論文架構 4
第二章 液晶簡介 6
§2-1液晶的歷史 6
§2-2 物質的相態分類 7
§2-3 液晶的分類 8
§2-3-1 盤狀液晶(Disc-like LCs) 9
§2-3-2 棒狀液晶(Rod-like LCs) 10
§2-4 液晶的物理特性 17
§2-4-1 光學異向性(Optical Anisotropy) 17
§2-4-2 介電異向性(Dielectric Anisotropy) 22
§2-4-3 連續彈性體理論(Elastic Continuum Theory) 24
第三章 實驗相關理論 27
§3-1 司乃爾定律(Snell’s law) 27
§3-2薄透鏡光學成像理論 29
§3-2-1 共軛方程式(Conjugate Equation) 29
§3-2-2 屈光度(Optical Power,簡稱K) 32
§3-3 液晶透鏡理論 33
§3-3-1 梯度折射率透鏡(Gradient Refractive Index Lens,簡稱GRIN Lens) 33
§3-3-2 菲涅耳透鏡(Fresnel Lens) 34
§3-3-3 液晶透鏡焦距計算 37
§3-3-2 液晶透鏡同心環 42
第四章 實驗方法與過程 44
§4-1 液晶透鏡設計與模擬 44
§4-1-1 設計目標及理論值計算 44
§4-1-2 3D曲面電極設計與模擬 46
§4-1-3 TechWiz LCD 3D模擬 47
§4-2 材料介紹 49
§4-3 液晶透鏡元件製作 52
§4-3-1 ITO基板表面水平配向處理 52
§4-3-2 平坦PDMS母模製作 53
§4-3-3 3D曲面電極基板製作及配向處理 54
§4-3-4 液晶透鏡製作步驟 55
§4-4 液晶透鏡元件觀察及量測之實驗架設 56
§4-4-1 液晶透鏡元件之偏光顯微鏡觀察 56
§4-4-2 液晶透鏡元件之實際焦距量測 57
§4-4-3 液晶透鏡元件之實際變焦效果 60
§4-4-4 液晶透鏡元件之反應時間量測 61
§4-4-5 液晶透鏡元件之同心環觀察及量測 62
§4-4-6 液晶透鏡元件與出射光偏振態變化之關係 63
第五章 實驗結果與討論 65
§5-1 液晶透鏡模擬結果與比較 65
§5-1-1 不同規格之液晶透鏡模擬比較 65
§5-1-2 18區3D曲面電極模擬結果 68
§5-1-3 TechWiz LCD 3D模擬結果 71
§5-2 液晶透鏡實驗結果 72
§5-2-1 偏光顯微鏡觀察液晶透鏡 72
§5-2-2 液晶透鏡元件之實際焦距光學量測 74
§5-2-3 液晶透鏡元件之實際變焦效果 79
§5-2-4 液晶透鏡元件之反應時間量測 86
§5-2-5 液晶透鏡元件之同心環觀察及量測 89
§5-2-6 液晶透鏡元件與出射光偏振態變化之關係 90
第六章 結論與未來展望 93
§6-1 結論 93
§6-2 未來展望 95
參考文獻 96
參考文獻 [1] M. Kawamura, and Y. Ito, “Liquid crystal lens with double circularly hole-patterned electrodes,” Mol. Cryst. Liq. Cryst. 542(1), 176-181 (2011).
[2] C.-J. Hsu, J.-J. Jhang, J.-C. Jhang, and C.-Y. Huang, “Influence of floating ring-electrode on large-aperture liquid crystal lens,” Liq. Cryst. 45(1), 40-48 (2017).
[3] S. Residori, U. Bortolozzo, A. Peigné, S. Molin, P. Nouchi, D. Dolfi, and J. P. Huignard, “Liquid crystals for optical modulation and sensing applications,” Liq. Cryst. XX. SPIE 9940, 90-97 (2016).
[4] M. R. Shenoy, M. Sharma, and A. S. An, “Electrically Controlled Nematic Liquid Crystal Core Waveguide With a Low Switching Threshold,” J. Lightwave Technol. 33(10), 1948-1953 (2015).
[5] H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid crystal lens,” Opt. Express 23(22), 28154-28162 (2015).
[6] Y.-J. Wang, P.-J. Chen, X. Liang, and Y.-H. Lin, “Augmented reality with image registration, vision, correction and sunlight readability via liquid crystal devices,” Sci. Rep. 7(1), 433 (2017).
[7] Y.-H. Lin and Y.-J. Wang, “Liquid crystal lenses in augmented reality,” SID Symp,” Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 48(1), 230-233 (2017).
[8] Y.-J. Wang and Y.-H. Lin, “An optical system for augmented reality with electrically tunable optical zoom function and image registration exploiting liquid crystal lenses,” Opt. Express 27, 21163-21172 (2019).
[9] P. Valley, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Nonmechanical bifocal zoom telescope,” Opt. Lett. 35, 2582-2584 (2010).
[10] J.-F. Algorri, and D.-C. Zografopoulos, V. Urruchi, and J.-M. Sánchez-Pena, “Recent Advances in Adaptive Liquid Crystal Lenses,” Crystals 9, 272 (2019).
[11] Y.-H Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111-143 (2017).
[12] S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679-1684 (1979).
[13] C.-W. Fowler and E.-S. Pateras, “Liquid crystal lens review,” Ophthal Physl Opt. 10(2),186-194 (1990).
[14] S. Sato, “Applications of liquid crystals to variablefocusing lenses,” Opt Rev. 6(6), 471-485 (1999).
[15] H. Nemati, E. Mohajerani, A. Moheghi, M. Behzadi Rad, and N. Hosain Nataj, “A simple holographic technic for fabricating a LC/polymer switchable Fresnel lens,” EPL 87(6), 64001 (2009).
[16] M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225(4-6), 277-280 (2003).
[17] L. Li, D. Bryant, T. van Heugten, and P.-J. Bos, “Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings,” Appl. Opt. 52(9), 1978-1986 (2013).
[18] H. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 14111 (2005).
[19] Y.-H. Lin and Y.-S. Tsou, “A polarization independent liquid crystal phase 82 modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110, 114516 (2011).
[20] M. Ye and S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42(10R), 6439 (2003).
[21] B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(11A) L1232 (2002).
[22] H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328-11335 (2007).
[23] F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatsh. Chem. 9, 421 (1888).
[24] O. Lehmam, “On flowing crystals,” Z. Phys. Chem. 4, 462 (1889).
[25] https://en.wikipedia.org/wiki/Friedrich_Reinitzer
[26] https://en.wikipedia.org/wiki/Otto_Lehmann_(physicist)
[27] https://psiberg.com/triple-point/
[28] 松本正一、角田市良合著,劉瑞祥譯,“液晶之基礎與應用”,國立編譯館出版(1996)
[29] https://en.wikipedia.org/wiki/Liquid_crystal#Order_parameter
[30] https://highscope.ch.ntu.edu.tw/wordpress/?p=1577
[31] L. M. Blinov, “Structure and Properties of Liquid Crystals,” Springer (2011).
[32] https://highscope.ch.ntu.edu.tw/wordpress/?p=1587
[33] https://en.wikipedia.org/wiki/Snell%27s_law#History
[34] Pantazis Mouroulis and John MacDonald, “Geometrical Optics and Optical Design,” O. U. P., USA (1996).
[35] S. Sato, A. Sugiyama, and R. Sato, “Variable-focus liquid-crystal Fresnel lens,” Jpn J Appl Phys. 24(8), L626-L628 (1985).
[36] Y.-M. Lee, J.-S. Gwag, Y. Choi, K.-H. Lee, C.-J. Yu, and J.-H. Kim, “Fast switching characteristics of a microlens array using the electroclinic effect of SmA* liquid crystals,” Appl Opt. 48(19), 3737-3741 (2009).
[37] Y.-H. Lin and Y.-S. Tsou, “A polarization independent liquid crystal phase modulation adopting surface pinning effect of polymer dispersed liquid crystals,” J. Appl. Phys. 110, 114516 (2011).
[38] https://en.wikipedia.org/wiki/Fresnel_lens#Publication_and_refinement
[39] A. Jamali, D. Bryant, Y. Zhang, A. Grunnet-Jepsen, A. Bhowmik, and P. J. Bos, “Design of a large aperture tunable refractive Fresnel liquid crystal lens,” Appl. Optics 57(7), B10-B19 (2018).
[40] A. Jamali, D. Bryant, A. K. Bhowmick, and P. J. Bos, “Large area liquid crystal lenses for correction of presbyopia,” Opt. Express 28(23), 33982 (2020).
[41] G. Vijayakumar, M.-J. Lee, M.-K. Song, S.-H. Ji, J. W.-Lee, C.-W. Lee, Y. S. Gal, H. J. Shim, Y.-K. Kang, G.-W. Lee, K.-K Kim, N.-G. Park, and S.-K. Kim, “New liquid crystal-embedded PVdF-co-HFP-based polymer electrolytes for dye-sensitized solar cell applications,” Macromol. Res. 17, 963-968 (2009).
[42] H. Yang, R. Wen, H. Zhao, M. Guo, L. Zhang, and Y. Chen, “Study on ageing characteristics and evaluation methods of RTV silicone rubber in high humidity area,” PloS one 16, 0251092 (2021).
[43] https://www.farnell.com/datasheets/3154500.pdf
[44] https://www.norlandprod.com/adhesives/nba%20107.html
[45] https://en.wikipedia.org/wiki/Polyvinyl_alcohol
[46] https://www.sun-way.com.tw/high-intensity-uv-lamps-100w-b-100ap-series-b-100ap-b-100ap-r.html
[47] https://www.spachoptics.com/Olympus-BX51-P-TRF-Polarizing-Microscope-p/olympus-bx51p-tr.htm
[48] https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/polarized/michel/
[49] F. Peng, H. Chen, F. Gou, Y.-H. Lee, M. Wand, M.-C. Li, S.-L. Lee, and S.-T. Wu, “Analytical equation for the motion picture response time of display devices,” J. Appl. Phys. 121, 023108 (2017)
[50] Y. Cho, C. Park, A. K. Bhowmik, and S.-W. Lee, “New overdrive technology for liquid-crystal displays with a simple architecture,” Opt. Eng. 49(3), 034001 (2010).
[51] 池慶安,透過多區域三維曲面電極製作可電控調焦之液晶透鏡(國立中央大學光電科學與工程學系,碩士論文,2022年)
[52] 孫紹哲,可調式液晶透鏡在老花眼鏡上的應用(國立臺灣大學光電所,碩士論文,2023年)
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明