參考文獻 |
[1] R. Won, "By-design broadband laser," Nature Photonics 16, 814–814 (2022).
[2] The Full EUV Optical Light Path - Inside the TWINSCAN NXE:3400 EUV Lithography Machine | ASML (2020).
[3] "Korean EUV Lithography Technology Enters Growth Phase," http://www.businesskorea.co.kr/news/articleView.html?idxno=55002.
[4] "南韓在 EUV 技術專利積極追趕,恐成為台積電未來潛在威脅," TechNews 科技新報 (2020).
[5] "ASML EUV lithography systems," https://www.asml.com/en/products/euv-lithography-systems.
[6] 施錫龍;丁永強;戴寶通, "極紫外光微影技術簡介," 電子月刊 16:3=176 2010.03[民99.03], 頁114-120 (2010).
[7] 李正中, 藝軒圖書出版社 -- 薄膜光學與鍍膜技術(第九版) (2019).
[8] E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, "Nanometer interface and materials control for multilayer EUV-optical applications," Progress in Surface Science 86, 255–294 (2011).
[9] Louis, Eric, et al. "Progress in Mo/Si multilayer coating technology for EUVL optics." Emerging Lithographic Technologies IV. Vol. 3997. SPIE, (2000).
[10] N. I. Chkhalo, S. A. Gusev, A. N. Nechay, D. E. Pariev, V. N. Polkovnikov, N. N. Salashchenko, F. Schäfers, M. G. Sertsu, A. Sokolov, M. V. Svechnikov, and D. A. Tatarsky, "High-reflection Mo/Be/Si multilayers for EUV lithography," Opt. Lett. 42, 5070 (2017).
[11] Yakshin, A. E., et al. "Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition." Emerging Lithographic Technologies XI. Vol. 6517. SPIE, (2007).
[12] J. Bosgra, E. Zoethout, A. M. J. van der Eerden, J. Verhoeven, R. W. E. van de Kruijs, A. E. Yakshin, and F. Bijkerk, "Structural properties of subnanometer thick Y layers in extreme ultraviolet multilayer mirrors," Appl. Opt. 51, 8541 (2012).
[13] P. A. Kearney, C. E. Moore, S. I. Tan, S. P. Vernon, and R. A. Levesque, "Mask blanks for extreme ultraviolet lithography: Ion beam sputter deposition of low defect density Mo/Si multilayers," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 15, 2452–2454 (1997).
[14] E. Spiller, S. L. Baker, P. B. Mirkarimi, V. Sperry, E. M. Gullikson, and D. G. Stearns, "High-performance Mo-Si multilayer coatings for extreme-ultraviolet lithography by ion-beam deposition," Appl. Opt., AO 42, 4049–4058 (2003).
[15] R. Schlatmann, A. Keppel, Y. Xue, J. Verhoeven, and M. J. van der Wiel, "Enhanced reflectivity of soft x‐ray multilayer mirrors by reduction of Si atomic density," Appl. Phys. Lett. 63, 3297–3299 (1993).
[16] A. S. Kuznetsov, M. A. Gleeson, and F. Bijkerk, "Ion effects in hydrogen-induced blistering of Mo/Si multilayers," Journal of Applied Physics 114, 113507 (2013).
[17] R. A. J. M. van den Bos, C. J. Lee, J. P. H. Benschop, and F. Bijkerk, "Blister formation in Mo/Si multilayered structures induced by hydrogen ions," J. Phys. D: Appl. Phys. 50, 265302 (2017).
[18] A. S. Kuznetsov, R. W. E. van de Kruijs, M. A. Gleeson, K. Schmid, and F. Bijkerk, "Hydrogen interaction with EUVL-relevant optical materials," J. Synch. Investig. 4, 563–566 (2010).
[19] S. Yulin, N. Benoit, T. Feigl, and N. Kaiser, "Interface-engineered EUV multilayer mirrors," Microelectronic Engineering 83, 692–694 (2006).
[20] T. Feigl, H. Lauth, S. Yulin, and N. Kaiser, "Heat resistance of EUV multilayer mirrors for long-time applications," Microelectronic Engineering 57–58, 3–8 (2001).
[21] S. M. Al-Marzoug and R. J. Hodgson, "Optimization of multilayer mirrors at 13.4 nm with more than two materials," Appl. Opt., AO 47, 2155–2160 (2008).
[22] Graham Jr, Samuel, et al. "Atomic hydrogen cleaning of EUV multilayer optics." Emerging Lithographic Technologies VII. Vol. 5037. SPIE, (2003).
[23] J. W. M. DuMond and J. P. Youtz, "Selective X-Ray Diffraction from Artificially Stratified Metal Films Deposited by Evaporation," Phys. Rev. 48, 703–703 (1935).
[24] E. Spiller, "Low‐Loss Reflection Coatings Using Absorbing Materials," Appl. Phys. Lett. 20, 365–367 (1972).
[25] Spiller, Eberhard. Soft X-ray optics. Vol. 15. SPIE press, (1994).
[26] A. V. Vinogradov and B. Ya. Zeldovich, "X-ray and far uv multilayer mirrors: principles and possibilities," Appl. Opt. 16, 89 (1977).
[27] Bakshi, Vivek. "EUV lithography." (2009).
[28] V. Banine and R. Moors, "Plasma sources for EUV lithography exposure tools," J. Phys. D: Appl. Phys. 37, 3207–3212 (2004).
[29] 戴宏穎, "使用離子束濺鍍系統降低EUV反射鏡鉬矽介面擴散層厚度之研究," 碩士論文, 國立中央大學光電科學與工程學系 (2022).
[30] F. Scha, "Multilayers for the EUV/soft X-ray range," Physica B (2000).
[31] H. Oizumi, A. Izumi, K. Motai, I. Nishiyama, and A. Namiki, "Atomic Hydrogen Cleaning of Surface Ru Oxide Formed by Extreme Ultraviolet Irradiation of Ru-Capped Multilayer Mirrors in H2O Ambience," Jpn. J. Appl. Phys. 46, L633–L635 (2007).
[32] K. Motai, H. Oizumi, S. Miyagaki, I. Nishiyama, A. Izumi, T. Ueno, and A. Namiki, "Cleaning technology for EUV multilayer mirror using atomic hydrogen generated with hot wire," Thin Solid Films 516, 839–843 (2008).
[33] H. J. Zhou, P. F. Zhong, and T. L. Huo, "Cleaning of carbon contamination on Si wafer with activated oxygen by synchrotron radiation," Acta Opt. Sin. 30, 907–910 (2010).
[34] Matsunari, S., et al. "Durability of capped multilayer mirrors for high volume manufacturing extreme ultraviolet lithography tool." Alternative Lithographic Technologies. Vol. 7271. SPIE, (2009).
[35] T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy, and N. V. Edwards, "Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography," Applied Surface Science 253, 1691–1708 (2006).
[36] S. Bajt, N. V. Edwards, and T. E. Madey, "Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation," Surface Science Reports 63, 73–99 (2008).
[37] Yulin, Sergiy, et al. "Mo/Si multilayers with enhanced TiO2-and RuO2-capping layers." Emerging Lithographic Technologies XII. Vol. 6921. SPIE, (2008).
[38] 國科會精密儀器發展中心, 真空技術與應用, 全華圖書(2004).
[39] 柯志忠, 卓文浩, 林建寶, 劉柏亨, and 陳建宏, "ALD設備與產業展望," 科儀新知 71–80 (2013).
[40] H. C. M. Knoops, T. Faraz, K. Arts, and W. M. M. (Erwin) Kessels, "Status and prospects of plasma-assisted atomic layer deposition," Journal of Vacuum Science & Technology A 37, 030902 (2019).
[41] "越薄越好,3D薄膜製程大挑戰:淺談原子層沈積技術," https://www.narlabs.org.tw/tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0J249620566869873056.
[42] "法拉第杯," 維基百科,自由的百科全書 (2024).
[43] S. Bajt, "Improved reflectance and stability of Mo-Si multilayers," Opt. Eng 41, 1797 (2002).
[44] S. Graham, C. Steinhaus, M. Clift, and L. Klebanoff, "Radio-frequency discharge cleaning of silicon-capped Mo/Si multilayer extreme ultraviolet optics," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 20, 2393–2400 (2002).
[45] Oizumi, Hiroaki, et al. "Contamination removal from EUV multilayer using atomic hydrogen generated by heated catalyzer." Emerging Lithographic Technologies IX. Vol. 5751. SPIE, (2005).
[46] L. Belau, J. Y. Park, T. Liang, and G. A. Somorjai, "The effects of oxygen plasma on the chemical composition and morphology of the Ru capping layer of the extreme ultraviolet mask blanks," J. Vac. Sci. Technol. B 26, 2225–2229 (2008).
[47] L. Belau, J. Y. Park, T. Liang, H. Seo, and G. A. Somorjai, "Chemical effect of dry and wet cleaning of the Ru protective layer of the extreme ultraviolet lithography reflector," J. Vac. Sci. Technol. B 27, 1919 (2009).
[48] Y. B. He, A. Goriachko, C. Korte, A. Farkas, G. Mellau, P. Dudin, L. Gregoratti, A. Barinov, M. Kiskinova, A. Stierle, N. Kasper, S. Bajt, and H. Over, "Oxidation and Reduction of Ultrathin Nanocrystalline Ru Films on Silicon: Model System for Ru-Capped Extreme Ultraviolet Lithography Optics," J. Phys. Chem. C 111, 10988–10992 (2007).
[49] Y. Iwasaki, A. Izumi, H. Tsurumaki, A. Namiki, H. Oizumi, and I. Nishiyama, "Oxidation and reduction of thin Ru films by gas plasma," Applied Surface Science 253, 8699–8704 (2007).
[50] T. Tsarfati, E. Zoethout, R. W. E. van de Kruijs, and F. Bijkerk, "Atomic O and H exposure of C-covered and oxidized d-metal surfaces," Surface Science 603, 2594–2599 (2009).
[51] I. Nishiyama, H. Oizumi, K. Motai, A. Izumi, T. Ueno, H. Akiyama, and A. Namiki, "Reduction of oxide layer on Ru surface by atomic-hydrogen treatment," J. Vac. Sci. Technol. B 23, 3129 (2005).
[52] J. Chen, E. Louis, C. J. Lee, H. Wormeester, R. Kunze, H. Schmidt, D. Schneider, R. Moors, W. van Schaik, M. Lubomska, and F. Bijkerk, "Detection and characterization of carbon contamination on EUV multilayer mirrors," Opt. Express 17, 16969 (2009).
[53] P. Meer, F. P. J. Nijweide, K. Hsiao, V. Schilling, and Z. Li, ′′Materials for Soft X-Ray and EUV Multi-Layer Mirrors,′′ (2017).
[54] J. Chen, E. Louis, R. Harmsen, T. Tsarfati, H. Wormeester, M. van Kampen, W. van Schaik, R. van de Kruijs, and F. Bijkerk, "In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers," Applied Surface Science 258, 7–12 (2011).
[55] A. S. Kuznetsov, M. A. Gleeson, and F. Bijkerk, "Hydrogen-induced blistering of Mo/Si multilayers: Uptake and distribution," Thin Solid Films 545, 571–579 (2013).
[56] 柯冠宇, "低溫電漿輔助原子層沉積法鍍製抗反射膜之低應力研究," 碩士論文, 國立中央大學光電科學與工程學系 (2024).
[57] D. L. Windt, "IMD—Software for modeling the optical properties of multilayer films," Computer in Physics 12, 360–370 (1998). |