博碩士論文 111226071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:3.149.254.146
姓名 施艾玲(Ai-Ling Shih)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氫離子轟擊對極紫外光反射鏡覆蓋層之影響
(The Effect of Capping Layers on EUV Reflection Mirror under Hydrogen Ion Bombardment)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-10以後開放)
摘要(中) 極紫外光(EUV)反射鏡對於反射率的要求極高,在使用過程中會因為污染造成反射率下降,生產良率也會大幅下降,為了維持良好的反射鏡品質,將碳汙染、錫汙染、表面氧化層及蝕刻時所造成的碎片清理乾淨,需使用氫離子對反射鏡表面做清潔,由於氫離子轟擊時間拉長會讓反射鏡表面產生氣泡,使反射鏡受到損壞造成反射率降低,因此本論文探討極紫外光反射鏡覆蓋層對於氫離子轟擊後的結果。
本研究使用離子束濺鍍機在Si基板上鍍製B4C/Mo/B4C/Si多層膜,固定每個材料的離子束電壓電流,利用原子力顯微鏡分析表面粗糙度並代入X射線反射儀做初步的薄膜厚度判斷,再利用高解析掃描穿透式電子顯微鏡互相交叉比對分析,改變鍍膜時間,即可獲得較高的反射率,使用EUV反射儀量測到在19°入射時獲得51.6%的反射率。
由於覆蓋層會因為EUV曝光機運作時,受到高能輻射汙染造成表面氧化,以及在清潔時造成的氫起泡,有文獻提到氧化物覆蓋層具有良好的抗氧化性和抗氫能力。因此本研究在反射鏡完成後,使用原子層沉積系統在鏡面上鍍製氧化物覆蓋層,利用氫離子源固定電壓電流在不同時間轟擊下,利用掃描式電子顯微鏡、原子力顯微鏡以及高解析穿透式電子顯微鏡進行量測分析,觀察反射鏡表面形貌及粗糙度以及剖面狀況。
摘要(英) Extreme ultraviolet (EUV) reflectors require exceptionally high reflectivity. However, during usage, contaminants can reduce reflectivity, significantly affecting production yield. To maintain high-quality reflectors, it is essential to remove carbon contamination, tin contamination, surface oxidation layers, and etching debris. This can be achieved by cleaning the mirror surface with hydrogen ions. Prolonged hydrogen ion bombardment can cause bubbles on the mirror surface, leading to damage and reduced reflectivity. Therefore, this paper investigates the effects of hydrogen ion bombardment on EUV mirror capping layers.
In this study, a B4C/Mo/B4C/Si multilayer film was deposited on a Si substrate using an ion beam sputtering machine. The ion beam voltage and current for each material were fixed. Surface roughness was analyzed using an Atomic Force Microscope, and preliminary film thickness was determined with an X-Ray Reflectivity. Cross-analysis was performed using a High-Resolution Scanning Transmission Electron Microscope. By adjusting the deposition time, higher reflectivity was achieved. Measurements using an EUV Reflectometer showed a reflectivity of 51.6% at a 19° incident angle.
Due to the high-energy radiation exposure during the operation of EUV lithography machines, the capping layer can be contaminated, leading to surface oxidation and hydrogen bubbles during cleaning. Literature indicates that oxide capping layers exhibit good oxidation resistance and hydrogen resistance. Therefore, in this study, an oxide capping layer was deposited on the mirror surface using an Atomic Layer Deposition system after the reflector was completed. The mirrors were subjected to hydrogen ion bombardment at a fixed voltage and current for various durations. Scanning Electron Microscopy, Atomic Force Microscopy, and High-Resolution Transmission Electron Microscopy were used to measure and analyze the surface morphology, roughness, and cross-sectional conditions of the mirrors.
關鍵字(中) ★ 反射鏡
★ 覆蓋層
★ 氫離子
★ 極紫外光
關鍵字(英)
論文目次 摘要 v
Abstract vi
誌謝 vii
目錄 ix
圖目錄 xii
表目錄 xvi
第1章 緒論 1
1-1 前言 1
1-2 研究目的 4
第2章 基礎理論 7
2-1 EUV多層膜反射鏡 7
2-2覆蓋層材料選擇 9
2-3 射頻離子束濺鍍法 10
2-3-1 射頻離子源與射頻中和器之基本架構 10
2-3-2 柵極光學 12
2-4 原子層沉積法 13
2-4法拉第杯 15
2-5 文獻探討 17
第3章 實驗方法與使用儀器 22
3-1 鍍膜系統 22
3-1-1離子束濺鍍系統 22
3-1-2原子層沉積系統 23
3-2 實驗方法 25
3-2-1 實驗流程 25
3-2-2 實驗步驟 26
3-3設計與模擬 31
3-4量測儀器 34
3-4-1 X射線反射儀(X-Ray Reflectivity, XRR) 34
3-4-2高解析掃描穿透式電子顯微鏡(High Resolution STEM, HRTEM) 35
3-4-3 原子力顯微鏡(Atomic Force Microscope, AFM) 38
3-4-4 EUV反射儀(EUV Reflectometer) 38
3-4-5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 39
第4章 實驗結果與討論 41
4-1多層膜分析 41
4-2-1 表面粗糙度之AFM分析 41
4-2-1 多層膜厚度之XRR分析 42
4-2-3 多層膜厚度之TEM分析 43
4-2-4 EUV反射鏡之反射率分析 44
4-2覆蓋層分析 51
4-2-1無覆蓋層對於離子轟擊時間之影響 51
4-2-2 SiO2覆蓋層對於離子轟擊時間之影響 53
4-2-3 TiO2覆蓋層對於離子轟擊時間之影響 55
4-2-4 氫離子轟擊曝露量對各材料表面狀況的影響 58
4-2-3 多層膜剖面圖之TEM分析 63
第5章 結論 67
參考文獻 69
參考文獻 [1] R. Won, "By-design broadband laser," Nature Photonics 16, 814–814 (2022).
[2] The Full EUV Optical Light Path - Inside the TWINSCAN NXE:3400 EUV Lithography Machine | ASML (2020).
[3] "Korean EUV Lithography Technology Enters Growth Phase," http://www.businesskorea.co.kr/news/articleView.html?idxno=55002.
[4] "南韓在 EUV 技術專利積極追趕,恐成為台積電未來潛在威脅," TechNews 科技新報 (2020).
[5] "ASML EUV lithography systems," https://www.asml.com/en/products/euv-lithography-systems.
[6] 施錫龍;丁永強;戴寶通, "極紫外光微影技術簡介," 電子月刊 16:3=176 2010.03[民99.03], 頁114-120 (2010).
[7] 李正中, 藝軒圖書出版社 -- 薄膜光學與鍍膜技術(第九版) (2019).
[8] E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, "Nanometer interface and materials control for multilayer EUV-optical applications," Progress in Surface Science 86, 255–294 (2011).
[9] Louis, Eric, et al. "Progress in Mo/Si multilayer coating technology for EUVL optics." Emerging Lithographic Technologies IV. Vol. 3997. SPIE, (2000).
[10] N. I. Chkhalo, S. A. Gusev, A. N. Nechay, D. E. Pariev, V. N. Polkovnikov, N. N. Salashchenko, F. Schäfers, M. G. Sertsu, A. Sokolov, M. V. Svechnikov, and D. A. Tatarsky, "High-reflection Mo/Be/Si multilayers for EUV lithography," Opt. Lett. 42, 5070 (2017).
[11] Yakshin, A. E., et al. "Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition." Emerging Lithographic Technologies XI. Vol. 6517. SPIE, (2007).
[12] J. Bosgra, E. Zoethout, A. M. J. van der Eerden, J. Verhoeven, R. W. E. van de Kruijs, A. E. Yakshin, and F. Bijkerk, "Structural properties of subnanometer thick Y layers in extreme ultraviolet multilayer mirrors," Appl. Opt. 51, 8541 (2012).
[13] P. A. Kearney, C. E. Moore, S. I. Tan, S. P. Vernon, and R. A. Levesque, "Mask blanks for extreme ultraviolet lithography: Ion beam sputter deposition of low defect density Mo/Si multilayers," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 15, 2452–2454 (1997).
[14] E. Spiller, S. L. Baker, P. B. Mirkarimi, V. Sperry, E. M. Gullikson, and D. G. Stearns, "High-performance Mo-Si multilayer coatings for extreme-ultraviolet lithography by ion-beam deposition," Appl. Opt., AO 42, 4049–4058 (2003).
[15] R. Schlatmann, A. Keppel, Y. Xue, J. Verhoeven, and M. J. van der Wiel, "Enhanced reflectivity of soft x‐ray multilayer mirrors by reduction of Si atomic density," Appl. Phys. Lett. 63, 3297–3299 (1993).
[16] A. S. Kuznetsov, M. A. Gleeson, and F. Bijkerk, "Ion effects in hydrogen-induced blistering of Mo/Si multilayers," Journal of Applied Physics 114, 113507 (2013).
[17] R. A. J. M. van den Bos, C. J. Lee, J. P. H. Benschop, and F. Bijkerk, "Blister formation in Mo/Si multilayered structures induced by hydrogen ions," J. Phys. D: Appl. Phys. 50, 265302 (2017).
[18] A. S. Kuznetsov, R. W. E. van de Kruijs, M. A. Gleeson, K. Schmid, and F. Bijkerk, "Hydrogen interaction with EUVL-relevant optical materials," J. Synch. Investig. 4, 563–566 (2010).
[19] S. Yulin, N. Benoit, T. Feigl, and N. Kaiser, "Interface-engineered EUV multilayer mirrors," Microelectronic Engineering 83, 692–694 (2006).
[20] T. Feigl, H. Lauth, S. Yulin, and N. Kaiser, "Heat resistance of EUV multilayer mirrors for long-time applications," Microelectronic Engineering 57–58, 3–8 (2001).
[21] S. M. Al-Marzoug and R. J. Hodgson, "Optimization of multilayer mirrors at 13.4 nm with more than two materials," Appl. Opt., AO 47, 2155–2160 (2008).
[22] Graham Jr, Samuel, et al. "Atomic hydrogen cleaning of EUV multilayer optics." Emerging Lithographic Technologies VII. Vol. 5037. SPIE, (2003).
[23] J. W. M. DuMond and J. P. Youtz, "Selective X-Ray Diffraction from Artificially Stratified Metal Films Deposited by Evaporation," Phys. Rev. 48, 703–703 (1935).
[24] E. Spiller, "Low‐Loss Reflection Coatings Using Absorbing Materials," Appl. Phys. Lett. 20, 365–367 (1972).
[25] Spiller, Eberhard. Soft X-ray optics. Vol. 15. SPIE press, (1994).
[26] A. V. Vinogradov and B. Ya. Zeldovich, "X-ray and far uv multilayer mirrors: principles and possibilities," Appl. Opt. 16, 89 (1977).
[27] Bakshi, Vivek. "EUV lithography." (2009).
[28] V. Banine and R. Moors, "Plasma sources for EUV lithography exposure tools," J. Phys. D: Appl. Phys. 37, 3207–3212 (2004).
[29] 戴宏穎, "使用離子束濺鍍系統降低EUV反射鏡鉬矽介面擴散層厚度之研究," 碩士論文, 國立中央大學光電科學與工程學系 (2022).
[30] F. Scha, "Multilayers for the EUV/soft X-ray range," Physica B (2000).
[31] H. Oizumi, A. Izumi, K. Motai, I. Nishiyama, and A. Namiki, "Atomic Hydrogen Cleaning of Surface Ru Oxide Formed by Extreme Ultraviolet Irradiation of Ru-Capped Multilayer Mirrors in H2O Ambience," Jpn. J. Appl. Phys. 46, L633–L635 (2007).
[32] K. Motai, H. Oizumi, S. Miyagaki, I. Nishiyama, A. Izumi, T. Ueno, and A. Namiki, "Cleaning technology for EUV multilayer mirror using atomic hydrogen generated with hot wire," Thin Solid Films 516, 839–843 (2008).
[33] H. J. Zhou, P. F. Zhong, and T. L. Huo, "Cleaning of carbon contamination on Si wafer with activated oxygen by synchrotron radiation," Acta Opt. Sin. 30, 907–910 (2010).
[34] Matsunari, S., et al. "Durability of capped multilayer mirrors for high volume manufacturing extreme ultraviolet lithography tool." Alternative Lithographic Technologies. Vol. 7271. SPIE, (2009).
[35] T. E. Madey, N. S. Faradzhev, B. V. Yakshinskiy, and N. V. Edwards, "Surface phenomena related to mirror degradation in extreme ultraviolet (EUV) lithography," Applied Surface Science 253, 1691–1708 (2006).
[36] S. Bajt, N. V. Edwards, and T. E. Madey, "Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation," Surface Science Reports 63, 73–99 (2008).
[37] Yulin, Sergiy, et al. "Mo/Si multilayers with enhanced TiO2-and RuO2-capping layers." Emerging Lithographic Technologies XII. Vol. 6921. SPIE, (2008).
[38] 國科會精密儀器發展中心, 真空技術與應用, 全華圖書(2004).
[39] 柯志忠, 卓文浩, 林建寶, 劉柏亨, and 陳建宏, "ALD設備與產業展望," 科儀新知 71–80 (2013).
[40] H. C. M. Knoops, T. Faraz, K. Arts, and W. M. M. (Erwin) Kessels, "Status and prospects of plasma-assisted atomic layer deposition," Journal of Vacuum Science & Technology A 37, 030902 (2019).
[41] "越薄越好,3D薄膜製程大挑戰:淺談原子層沈積技術," https://www.narlabs.org.tw/tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0J249620566869873056.
[42] "法拉第杯," 維基百科,自由的百科全書 (2024).
[43] S. Bajt, "Improved reflectance and stability of Mo-Si multilayers," Opt. Eng 41, 1797 (2002).
[44] S. Graham, C. Steinhaus, M. Clift, and L. Klebanoff, "Radio-frequency discharge cleaning of silicon-capped Mo/Si multilayer extreme ultraviolet optics," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 20, 2393–2400 (2002).
[45] Oizumi, Hiroaki, et al. "Contamination removal from EUV multilayer using atomic hydrogen generated by heated catalyzer." Emerging Lithographic Technologies IX. Vol. 5751. SPIE, (2005).
[46] L. Belau, J. Y. Park, T. Liang, and G. A. Somorjai, "The effects of oxygen plasma on the chemical composition and morphology of the Ru capping layer of the extreme ultraviolet mask blanks," J. Vac. Sci. Technol. B 26, 2225–2229 (2008).
[47] L. Belau, J. Y. Park, T. Liang, H. Seo, and G. A. Somorjai, "Chemical effect of dry and wet cleaning of the Ru protective layer of the extreme ultraviolet lithography reflector," J. Vac. Sci. Technol. B 27, 1919 (2009).
[48] Y. B. He, A. Goriachko, C. Korte, A. Farkas, G. Mellau, P. Dudin, L. Gregoratti, A. Barinov, M. Kiskinova, A. Stierle, N. Kasper, S. Bajt, and H. Over, "Oxidation and Reduction of Ultrathin Nanocrystalline Ru Films on Silicon: Model System for Ru-Capped Extreme Ultraviolet Lithography Optics," J. Phys. Chem. C 111, 10988–10992 (2007).
[49] Y. Iwasaki, A. Izumi, H. Tsurumaki, A. Namiki, H. Oizumi, and I. Nishiyama, "Oxidation and reduction of thin Ru films by gas plasma," Applied Surface Science 253, 8699–8704 (2007).
[50] T. Tsarfati, E. Zoethout, R. W. E. van de Kruijs, and F. Bijkerk, "Atomic O and H exposure of C-covered and oxidized d-metal surfaces," Surface Science 603, 2594–2599 (2009).
[51] I. Nishiyama, H. Oizumi, K. Motai, A. Izumi, T. Ueno, H. Akiyama, and A. Namiki, "Reduction of oxide layer on Ru surface by atomic-hydrogen treatment," J. Vac. Sci. Technol. B 23, 3129 (2005).
[52] J. Chen, E. Louis, C. J. Lee, H. Wormeester, R. Kunze, H. Schmidt, D. Schneider, R. Moors, W. van Schaik, M. Lubomska, and F. Bijkerk, "Detection and characterization of carbon contamination on EUV multilayer mirrors," Opt. Express 17, 16969 (2009).
[53] P. Meer, F. P. J. Nijweide, K. Hsiao, V. Schilling, and Z. Li, ′′Materials for Soft X-Ray and EUV Multi-Layer Mirrors,′′ (2017).
[54] J. Chen, E. Louis, R. Harmsen, T. Tsarfati, H. Wormeester, M. van Kampen, W. van Schaik, R. van de Kruijs, and F. Bijkerk, "In situ ellipsometry study of atomic hydrogen etching of extreme ultraviolet induced carbon layers," Applied Surface Science 258, 7–12 (2011).
[55] A. S. Kuznetsov, M. A. Gleeson, and F. Bijkerk, "Hydrogen-induced blistering of Mo/Si multilayers: Uptake and distribution," Thin Solid Films 545, 571–579 (2013).
[56] 柯冠宇, "低溫電漿輔助原子層沉積法鍍製抗反射膜之低應力研究," 碩士論文, 國立中央大學光電科學與工程學系 (2024).
[57] D. L. Windt, "IMD—Software for modeling the optical properties of multilayer films," Computer in Physics 12, 360–370 (1998).
指導教授 郭倩丞 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明