博碩士論文 111240002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:134 、訪客IP:18.191.132.211
姓名 黃智彙(Chih-Hui Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 液晶結合電致變色材料之光電特性及其調光調色之應用
(Optoelectrical properties of liquid crystals combined with electrochromic materials for dimmer and color modulation applications)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-23以後開放)
摘要(中) 一般而言,液晶技術多以染料摻雜和控制布拉格反射頻帶控制光吸收或變色,然而結合液晶與電致變色技術實現調光調色功能的研究並不多見,因此本研究主要探討將電致變色技與液晶技術結合,以創造兼具兩者優勢的新型顯示技術。首先,本研究嘗試以正型液晶E7摻雜離子鹽LiClO_4提供電致變色中氧化還原反應所需離子,結合電致變色層製成液晶電致變色元件,然而發現離子自發性垂直基板排列的問題導致造成液晶失去雙折射特性,因此本研究以負型液晶HNG30400-200取代正型液晶以解決該問題,並加入手性分子S811形成螺旋結構提升離子遷移效果,實現無色透明態、上色透明態、上色散射態及無色散射態等四種狀態,但依然存在操作電壓較大、顏色深度和均勻度不理想等問題。本研究接著針對電致變色性能進行提升,比較了三種離子液[Bmim][NTf2]、[Bmim][PF6]與[Emim][BF4]作為電致變色電解質層之效果,發現[Bmim][PF6]為本實驗架構下較適合之離子液,但仍存在褪色慢、褪色不完全的缺陷,因此進一步以UV固化電解質開發具備較好性能之電致變色元件,其在638.8 nm處穿透率可從8.88%變化至69.12%,並展現良好的切換速度和記憶效應。透過摻雜AG1、AZO1、S-428等二色性染料於液晶並結合本研究電致變色元件,驗證了液晶與電致變色技術結合的可行性,並實現不同的調光調色功能,其中液晶摻雜S-428結合電致變色元件於400 nm至800 nm波段範圍整體穿透率低至2.93%,展現最佳之暗態,因其具備高動態範圍與可視性佳等優點,未來可應用於AR/VR等穿戴式裝置之開發。
摘要(英) In general, liquid crystal technology often utilizes dye doping and Bragg reflection bandwidth to manage light absorption or color change. However, research on combining liquid crystals with an electrochromic layer to achieve dimming and color modulation is relatively scarce. Therefore, this study mainly explores the combination of an electrochromic layer with liquid crystal technology to create a novel display technology that incorporates the advantages of both. Firstly, this study attempted to use positive liquid crystal E7 doped with ion salt LiClO_4 to provide ions for the redox reactions in electrochromism, creating a liquid crystal electrochromic device by combining it with an electrochromic layer. However, it was found that the spontaneous vertical alignment of ions caused the liquid crystal to lose its birefringence. To address this issue, the study replaced the positive liquid crystal with negative liquid crystal HNG30400-200 and doped it with chiral dopants S811 to form a helical structure, enhancing ion migration. This device exhibited four operating states: colorless transparent, colored transparent, colored scattering, and colorless scattering. However, issues such as high operating voltage and unsatisfactory color uniformity persisted. The study then focused on improving electrochromic performance by comparing the effects of three ionic liquids: [Bmim][NTf2], [Bmim][PF6], and [Emim][BF4], as electrochromic electrolyte layers. It was found that [Bmim][PF6] was more suitable within the framework of this study, yet it still exhibited a slow and incomplete bleached state. Therefore, UV-curable electrolytes were used to create electrochromic devices with better performance, showing a transmittance change from 8.88% to 69.12% at 638.8 nm and demonstrating good switching speed and memory effect. By doping dichroic dyes AG1, AZO1, and S-428 into the liquid crystal and combining them with the electrochromic devices developed in this study, the feasibility of combining liquid crystal and electrochromic layers was verified, achieving dimming and color modulation. Among them, the device of liquid crystal doped with S-428 combined with the electrochromic layer showed the best dark state with an overall transmittance as low as 2.93% across the wavelength band between 400 nm and 800 nm. Due to its high dynamic range and good visibility, it has potential applications in the development of wearable devices such as AR/VR.
關鍵字(中) ★ 電致變色
★ 二色性染料
★ 液晶摻雜離子
★ 調光
★ 調色
關鍵字(英) ★ Electrochromism
★ Dichroic dye
★ Liquid crystal doped with ion
★ Smart dimming
★ Color modulation
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
符號說明 xiii
第一章 緒論 1
§1-1 前言 1
§1-2 研究動機 1
§1-3 文獻回顧 2
§1-4 論文架構 5
第二章 液晶簡介 7
§2-1 液晶導論 7
§2-1-1 液晶簡史 7
§2-1-2 液晶定義 7
§2-2 液晶分類 8
§2-3 液晶的物理特性 15
§2-3-1 光學異向性(Optical anisotropy) 15
§2-3-2 介電異向性(Dielectric anisotropy) 20
§2-3-3 連續彈性體理論(Elastic continuum theory) 22
第三章 實驗相關理論 24
§3-1 摩擦配向 24
§3-2 電致變色 25
§3-2-1 電致變色原理 25
§3-2-2 電致變色材料 27
§3-2-3 電解質 29
§3-3 電致變色特性 30
§3-3-1 對比度 30
§3-3-2 反應時間 31
§3-3-3 記憶效應 31
§3-4膽固醇液晶排列結構 32
§3-5 二色性染料 34
第四章 實驗方法與流程 35
§4-1 材料介紹 35
§4-1-1 向列型液晶 35
§4-1-2 手性分子 36
§4-1-3 電致變色聚合物 36
§4-1-4 電解質 37
§4-1-5 二色性染料 39
§4-2 液晶盒製作 40
§4-2-1 材料配製 40
§4-2-2 ITO玻璃基板裁切與清洗 41
§4-2-3 玻璃基板表面塗佈電致變色層 41
§4-2-4 液晶空盒製作與材料注入 42
§4-3 實驗架設 43
§4-3-1 穿透頻譜量測 43
§4-3-2 積分球量測 44
§4-3-3 偏光顯微鏡下之液晶盒觀測 45
第五章 實驗結果與討論 46
§5-1 電致變色層結合正型液晶摻雜離子之變色效果與液晶排列探討 46
§5-1-1 不同電致變色層結合正型液晶摻雜離子對變色效果之影響 47
§5-1-2 不同液晶盒厚度對電致變色層結合正型液晶摻雜離子變色效果之影響 52
§5-1-3 不同重量百分濃度電解質對電致變色層結合正型液晶摻雜離子變色效果之影響 54
§5-2 電致變色層結合負型液晶摻雜離子之變色效果與液晶排列探討 56
§5-2-1 電致變色層結合負型液晶摻雜離子對變色效果之影響 56
§5-2-2 不同電致變色層結合膽固醇液晶摻雜離子對變色效果之影響 58
§5-3 不同電致變色層之光電特性 61
§5-3-1 不同電解質之光電特性 61
§5-3-2 不同電致變色材料之光電特性 64
§5-3-3 電致變色層結合液晶摻雜二色性染料之光電特性 69
第六章 結論與未來展望 81
§6-1 結論 81
§6-1-1 電致變色層結合正型液晶摻雜離子之變色效果與液晶排列探討 81
§6-1-2 電致變色層結合負型液晶摻雜離子之變色效果與液晶排列探討 81
§6-1-3 電致變色層結合液晶摻雜二色性染料之光電特性 82
§6-2 未來展望 83
參考文獻 86
參考文獻 [1] V. Rai, R.S. Singh, D. J. Blackwood, and D. Zhili, “A Review on Recent Advances in Electrochromic Devices: A Material Approach,” ACS Appl. Eng. Mater, 22(8), 2000082 (2020).
[2] H. Xian, L. Li, Y. Ding, M. Chu, and C. Ye, “Preparation and orthogonal analysis for dual-responsive electrochromic polymer dispersed liquid crystal devices,” Polymers, 15(8), 1860 (2023).
[3] H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90, 460-500 (2002).
[4] 松本正一、角田市良(劉瑞祥 譯),“液晶之基礎與應用”,國立編譯館出版(1996).
[5] R. J. A. Tough and M. J. Bradshaw, “The determination of the order parameters of nematic liquid crystals by mean field extrapolation,” J. Phys. France, 44(3), pp.447-454 (1983).
[6] P. J. Collings and J. W. Goodby, “Introduction to Liquid Crystals Chemistry and Physics,” CRC Press (1997).
[7] H.-S. Kitzerow and C. Bahr, “Chirality in Liquid Crystals,” Springer, New York (2001).
[8] S. Chandrasekhar, “Recent developments in the physics of liquid crystals,” Contemp. Phys. 29, 527 (1988).
[9] M. J. Cook and M. R. Wilson, “Calculation of helical twisting power for liquid crystal chiral dopants,” J. Chem. Phys. 112, 1560-1564 (2000).
[10] A. Yariv and P. Yeh, “Optical Waves in Crystals,” John Wiley & Sons, Inc., New York (1983).
[11] G. Vertogen, “Elastic constants and the continuum theory of liquid crystals,” Physica A. 117, 221-231 (1983).
[12] D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683 (1972).
[13] G.A. Niklasson and C.G. Granqvist, “Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these,” J. Mater. Chem, 17, 127 (2007).
[14] P.M.S. Monk, R.J. Mortimer, and D. Rosseinsky, “Electrochromism and electrochromic devices,” Cambridge University Press. (2007).
[15] X. Li, Y. Guo, M. Zhang, C. Zhang, R. Niu, H. Ma, and Y. Sun, “Colorable light-scattering device based on polymer-stabilized ion-doped cholesteric liquid crystal and an electrochromatic layer,” ACS Appl. Mater. Interfaces, 15, 7184-7195 (2023).
[16] J. Jensen, M. Hösel, I. Kim, J.S. Yu, J. Jo, F.C. Krebs, “Fast Switching ITO Free Electrochromic Devices,” Adv. Funct. Mater, 24(9), 1228-1233 (2014).
[17] P.H. Aubert, A.A. Argun, A. Cirpan, D.B. Tanner, and J.R. Reynolds, “Microporous Patterned Electrodes for Color-Matched Electrochromic Polymer Displays,” Chem. Mater, 16(12), 2386-2393 (2004).
[18] J. Jensen, H.F. Dam, J.R. Reynolds, A.L. Dyer, F.C. Krebs, “Manufacture and demonstration of organic photovoltaic-powered electrochromic displays using roll coating methods and printable electrolytes,” Polymer Physics, 50(8), 536-545 (2012).
[19] https://www.dakenchem.com/polymer-dispersed-liquid-crystals/
[20] 邱謙育,“利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器”,國立中央大學光電科學與工程學系 (2016)
[21] https://patents.google.com/patent/EP1283253A1/en
[22] https://zh.wikipedia.org/zh-tw/%E9%AB%98%E6%B0%AF%E9%85%B8%E9%8B%B0
[23] K. R. Seddon, A. Stark, M. J. Torres, “Influence of chloride, water, and organic solvents on the physical properties of ionic liquids,” Pure and Applied Chemistry, 72(12), 2275-2287 (2000).
[24] https://solvionic.com/en/ionic-liquids/5679-1-butyl-3-methylimidazolium-bistrifluoromethanesulfonylimide.html
[25] J. Dupont, R.F. Souza, P.A.Z. Suarez, “Ionic liquid (molten salt) phase organometallic catalysis,” Chemical Reviews, 102(10), 3667-3691 (2002).
[26] https://zh.wikipedia.org/zh-tw/1-%E6%AD%A3%E4%B8%81%E5%9F%BA-3-%E7%94%B2%E5%9F%BA%E5%92%AA%E5%94%91%E9%8E%93%E5%85%AD%E6%B0%9F%E7%A3%B7%E9%85%B8%E9%B9%BD
[27] https://de.wikipedia.org/wiki/1-Ethyl-3-methylimidazoliumtetrafluoroborat
[28] 林芯瑋, “聚合物穩固電致變色液晶之光電特性及其應用”,國立中央大學光電科學與工程學系 (2023)
[29] C. W. Chen, A. N. Brigeman, T. J. Ho, I. C. Khoo, “Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal,” Opt. Maters. Express, 8(3), 691 (2018).
[30] Z. Lan, Y. Li, H. Dai, D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photonics Journal, 9(1), 1-7 (2017).
[31] K. T. Cheng, P. Y. Lee, M. M. Qasim, C. K. Liu, W. F. Cheng, T. D. Wilkinson, “Electrically switchable and permanently stable light scattering modes by dynamic fingerprint chiral textures,” ACS Appl Mater Interfaces, 8(16), 10483-10493 (2016).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明