博碩士論文 107389602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.17.184.130
姓名 利亞 普(Pouria Dadvari)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 應用於電催化析氧反應之高性能多金屬尖晶石 合成及其機理動力學模擬研究
(Synthesis of High-Performance Multimetallic Spinel for Oxygen Evolution Reaction Electrocatalysis and Mechanistic Kinetic Modeling)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 開發用於析氧反應(OER)的高效穩定且價格低廉的電催化劑對於發展用於生產可持
續氫燃料的水電解槽技術至關重要。
高熵陶瓷具有獨特的性質,例如晶格畸變和高構型熵, 有益於催化反應。本工作透過
溶膠-凝膠自燃法,製備了五種含有 3d 過渡金屬和鋁( (AlCrCoNiFe2)O)的金屬尖晶
石,並與其他合成的多金屬和單金屬氧化物在鹼性條件下的 OER 電催化性能進行了
比較。電化學分析表明,合成的五種金屬尖晶石在泡沫鎳基板上產生最低的電荷轉移
電阻(1.666 V vs RHE 時為 0.49 (Ω))、塔菲爾斜率(43 mV.dec-1
) 和過電位(η10=320
mV)主要歸因於缺陷晶體結構產生的空間電荷界面極化,可以增加反應界面金屬-氧
(M-O)鍵斷裂的局部電場強度, M-O 鍵溫和的共價特性,快速的電荷傳輸和較小
的距離活躍站點。總體而言, 這些因素都可以增加活性位點的形成、中間體之間的碰
撞和 O2 形成的速率。
將 五 種不同金屬摻入晶體結構中所產生的高構形熵也可以提高 OER 的相穩定性。
動力學建模也可驗證多金屬尖晶石表面可能的反應機制。
摘要(英) The development of efficient and stable electrocatalysts with low prices for the oxygen evolution reaction (OER) is pivotal in the advancement of water electrolyzer technologies for production of sustainable hydrogen fuel. High entropy ceramics have distinctive properties such as lattice distortion and high configurational entropy which can be very useful for catalytic purposes. In this work, through the application of the sol-gel auto-combustion method, five metal spinel containing 3d transition metals and Aluminum ((AlCrCoNiFe2)O) were prepared, and their electrocatalytic performance in comparison with other synthesized multi-metal and monometallic oxides for OER within an alkaline medium was analyzed. The electrochemical analysis revealed that the synthesized five metal spinel yielded the lowest charge transfer resistance (0.49 (Ω) at 1.666 V vs RHE ), Tafel slope (43 mV.dec-1), and overpotential (η10=320 mV) with nickel foam substrate outcomes mainly can be attributed to the space charge interfacial polarization stemming from defective crystal structure which can increase local electric field strength for metal-oxygen (M-O) bond breakage at reaction interface, mild covalency character of M-O bonds, fast charge transport and a small distance between active site. Totally all these factors can increase the rate of active sites formation, collision between intermediates, and O2 formation. High configurational entropy coming from the incorporation of five dissimilar metals into the crystal structure can also increase phase stability for OER. Kinetic modeling also can be a useful method for testifying possible reaction mechanism on the surface of multi-metal spinel.
Key words: Oxygen Evolution Reaction (OER), High Entropy Ceramics (HEC), Cocktail effect, Sol-gel auto-combustion method, Multimetallic spinel, Tafel slope, Overpotential, Space charge-interfacial polarization, Defective crystal structure, Local electric field strength, Metal-oxygen covalency, Charge transport, Active sites, Kinetic model, Reaction mechanism.
關鍵字(中) ★ 析氧反應
★ 高熵陶瓷
★ 動力學模型
關鍵字(英) ★ Oxygen Evolution Reaction
★ High Entropy Ceramic
★ Kinetic Model
論文目次 摘要…………………………………………………………………………………………...….......I
Abstract……………………………………..…………………………………………………...…....II
Table of content………………………………………………………………………….………..…III
Table of figures……………………………………………………………………………...……..…V
List of Tables………………………………………………………………………………….…...VIII
Chapter 1 Introduction………………………………………………………………………...……….1
1.1 Disordered crystalline materials and their advantage for electrocatalytic purposes……...….…2
1.2 High entropy materials……………………………………………………………………....…3
1.2.1 Characteristics of high entropy material……………………………………………...…..…4
1.2.1.1 Thermodynamics: high entropy effect………………………………………………..…4
1.2.1.2 Kinetic: sluggish diffusion effect……………………………………………………..…4
1.2.1.3 Structure: severe lattice distortion………………………………………………..….…..4
1.2.1.4 Cocktail effect…………………………………………………………………………...5
1.3 Spinel…………………………………………………………………………………….……...5
1.4 Adsorption isotherm………………………………………………………………………....….5
1.4.1 Langmuir isotherm……………………………………………………………….……....….5
1.4.2 Frumkin isotherm………………………………………………………………………........6
1.4.3 Frumkin-Temkin isotherm……………………………………………….………….……....6
Chapter 2 Literature review…………………………………………………………………….…..…8
2.1 OER electrocatalysts………………………………………………………………………..…..8
2.2 Recent works related to high entropy materials for OER ……………………………………...9
2.3 Suggested descriptors proposed for OER efficiency of catalysts…………………………..…..9
2.4 Different OER mechanisms in alkaline environment…………………………………….……11
Chapter 3 Experimental methodology…………………………………………………….….............12
3.1 Materials and preparation methods……………………………………………….....….......…12
3.2 Characterization…………………………………………………………………………..…...12
3.2.1 X-ray powder diffraction (XRD) ……………….……………………………………….....12
3.2.1.1 X-ray diffraction refinement and crystallite size estimation…………….…….……....12
3.2.2 X-ray photoelectron spectroscopy (XPS)…………………………………….……..….......12
3.2.3 Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and
energy dispersive X-ray spectroscopy (EDS)……………………....………………..…….13
3.3 Electrochemical measurement…………………………………………….…….……….….…13
3.4 Impedance spectroscopy analysis for space charge measurement……………….…...….........14
3.5 Faraday efficiency…………………………………………………………………………......14
Chapter 4 Results and discussion…………………………………………………………….………15
4.1 Mixing or configurational entropy………………………………………………………....…..15
4.2 Morphology, composition and crystallographic structure analysis……………….……......…..15
4.3 Electroanalytical results……………………………………………………...………….…..…16
4.4 Factors affecting activity of catalysts…………………………………………………….….....17
4.4.1 Space charge-interfacial and charge transport polarization………………...……....….......17
4.4.2 Covalency character of metal-oxygen bond in oxides……….……………………....….....18
4.4.3 Distance between active sites………………………………………………….....….…......19
4.5 Stability and efficiency…………………………………………………………...….…….......19
4.6 Derivation of kinetic model for possible OER mechanisms……………….……………..........20
4.6.1 Derivation of impedance function with Langmuir adsorption isotherm…………………...20
4.6.2 Surface coverage versus applied electric potential…………………………………….......20
4.6.3 Charge balance equation for Krasil′shchikov path………………………………………....21
4.6.4 Mass balance equations for intermediates of Krasil′shchikov path………….……..….......22
4.6.5 Kinetic model for layered double hydroxide (LDH) mechanism………………...………..26
4.6.6 Kinetic model for Nørskov mechanism…………………………...………………….....…31
4.7 Active sites and turn over frequency………………………………………………………..….34
4.8 Gibbs free energy changes…………………………………………………………………..….35
4.9 Correspondence of kinetic model with experimental results……………………………….......36
Chapter 5 Conclusion…….………………………………………………………………...……...…37
References……………………..……………………………………………………………..…..…116
參考文獻 [1] Sapountzi, F. M.; Gracia, J. M.; (Kees-Jan) Weststrate, C. J.; Fredriksson, H. O. A.; (Hans) Niemantsverdriet, J. W. Electrocatalysts for the Generation of Hydrogen, Oxygen and Synthesis Gas. PECS 2017, 58, 1-35.
[2] Scott, K. Electrochemical Methods for Hydrogen Production. RSC, 2020. DOI: 10.1039/9781788016049-00001.
[3] Anantharaj, S.; Ede, S. R.; Karthick, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revising Activity Parameters with a Critical Assessment. Energy Environ. Sci. 2018, 11, 744-771.
[4] Simonov, A.; Goodwin, A. L. Designing Disorder into Crystalline Materials. Nat. Rev. Chem. 2020, 4, 657-673.
[5] Zhang, Y. High Entropy Materials, a Brief Introduction. Springer Nature Singapore Pte Ltd. 2019. DOI: 10.1007/978-981-13-8526-1.
[6] Alvi, S. A. Synthesis and Characterization of High Entropy Alloy and Coating. Licentiate thesis, Department of Engineering Sciences and Mathematics, Division of Material Science, Luleå University of Technology 2019. ISBN: 978-91-7790-395-6.
[7] Yeh, J. Recent Progress in High-Entropy Alloys. Eur J Control 2006, 31, 633-648. DOI: 10.3166/acsm.31.633-648.
[8] Miracle, D. B.; Senkov, O. N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Mater. 2016, 122, 448-511.
[9] Walsh, A.; Wei, S.-H.; Yan, Y.; Al-Jassim, M. M.; Turner, J. A. Structural, Magnetic, and Electronic Properties of the Co-Fe-Al Oxide Spinel System: Density Functional Theory Calculations. Phys. Rev. B 2007, 76, 165119.
[10] Bockris, J. O′M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry. Kluwer Academic Publishers 2002. DOI: 10.1007/b113922.
[11] Li, X.; Hao, X.; Abudula, A.; Guan, G. Nanostructured catalysts for electrochemical water splitting: current state and prospects. J. Mater. Chem. A. 2016, 4, 11973-11995.
[12] Li, Y.; Guo, S. Noble metal-based 1D and 2D electrocatalytic nanomaterial: Recent progress, challenges and perspectives. Nano Today 2019, 28, 100774.
[13] Anantharaj, S.; Ede, S. R.; Karthic, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and Correctness in the Evaluation of Electrocatalytic Watersplitting: Revisiting Activity Parameters with a Critical Assessment. Energy Environ. Sci. 2018, 11, 744.
[14] Read, C. G.; Callejas, J. F.; Holder, C. F.; Schaak, R. E. General Strategy for Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution. ACS Appl. Mater. Interfaces 2016, 8, 12798-12803.
[15] Yang, Y.; Fei, H.; Ruan, G.; Tour, J. M. Porous Cobalt-Based Thin Film as a Bifunctional Catalyst for Hydrogen Generation and Oxygen Generation. Adv. Mater. 2015, 27, 3175-3180.
[16] Liu, M.; Li, J. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen. ACS Appl. Mater. Interfaces. 2016, 8, 2158-2165.
[17] Chang, J.; Liang, L.; Li, C.; Wang, M.; Ge, J.; Liu, C.; Xing, W. Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Catalysts for a Water Electrolysis Cell and the Origin for Cell Performance Degradation. Green Chem. 2016, 18, 2287-2298.
[18] Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. J. Am. Chem. Soc. 2012, 134, 17253-17261.
[19] Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1702774.
[20] Calle-Vallejo, F.; Koper, M. T.; Bandarenka, A. S. Tailoring the Catalytic Activity of Electrodes with Monolayer Amount of Foreign Metals. Chem. Soc. Rev. 2013, 42, 5210.
[21] Stephens, I. E.; Bondarenko, A. S.; Perez-Alonso, F. J.; Calle-Vallejo, F.; Bech, L.; Johansson, T. P.; Jepsen, A. K.; Frydendal, R.; Knudsen, B. P.; Rossmeisl, J. Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying. J. Am. Chem. Soc. 2011, 133, 5485.
[22] Bligaard, T.; Nørskov, J. K. Ligand Effect in Heterogeneous Catalysis and Electrochemistry. Electrochim. Acta 2007, 52, 5512-5516.
[23] Xu, Z.; Kitchin, J. R. Relationships Between the Surface Electronic and Chemical Properties of Doped 4d and 5d Late Transition Metal Dioxide. J. Chem. Phys. 2015, 142, 104703.
[24] Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of Strain and Ligand Effects in the Modification of the Electronic and Chemical Properties of Bimetallic Surfaces. Phys. Rev. Lett. 2004, 93, 156801.
[25] Gerken, J. B.; Shaner, S. E.; Massé, R. C.; Porubsky, N. J.; Stahl, S. S. A Survey of Diverse Earth Abundant Oxygen Evolution Electrocatalysts Showing Enhanced Activity from Ni-Fe Oxides Containing a Third Metal. Energy Environm. Sci. 2014, 7, 2376-2382.
[26] Zhou, X.; Yang, T.; Li, T.; Zi, Y.; Zhang, S.; Yang, L.; Liu, Y.; Yang, J. ; Tang, J. In-Situ Fabrication of Carbon Compound NiFeMo-P Anchored on Nickel Foam as Bifunctional Catalyst for Boosting Overall Water Splitting. Nano Res. Energy 2023, 2, e9120086.
[27] Bhoi, U.; Ray, S.; Bhand, S.; Ninawe, P.; Roy, D.; Rana, S.; Tarafder, K.; Ballav, N. Distal Synergistic Effect in Bimetal-Organic Framework for Superior Catalytic Water Oxidation. ACS Energy Lett. 2023, 8, 4465-4473.
[28] Kumar, A.; Purkayastha, S. K.; Guha, A. K.; Das, M. R.; Deka, S. Designing Nanoarchitecture of NiCu Dealloyed Nanoparticles on Hierarchical Co Nanosheet for Alkaline Overali. ACS Catal. 2023, 13, 10615-10626.
[29] Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337-365.
[30] Nikolov, I.; Darkaoui, R.; Zhecheva, E.; Stoyanova, R.; Dimitrov, N.; Vitanov, T. Electrocatalytic Activity of Spinel Related Cobalties MxCo3-xO4 (M=Li, Ni, Cu) in the Oxygen Evolution Reaction. J. Electroanal. Chem. 1997, 429, 157.
[31] Haenen, J.; Visscher, W.; Barendrecht, E. Characterization of NiCo2O4 Electrodes for O2 Evolution: Part III. Ageing Phenomena of NiCo2O4 Elctrodes. J. Electroanal. Chem. 1986, 208, 323-341.
[32] Hamdani, M.; Singh, R. N.; Chartier, P. Co3O4 and Co-Based Spinel oxides Bifunctional Oxygen Electrodes. J. Electrochem. Sci. 2010, 5, 556.
[33] Maitra, U.; Naidu, B. S.; Govindaraj, A.; Rao, C. N. R. Importance of Trivalency and the e1g Configuration in the Photocatalytic Oxidation of Water by Mn and Co Oxides. Natl. Acad. Sci. 2013, 110, 11704.
[34] Zhang, J.; Zhang, D.; Yang, Y.; Ma, J.; Cui, S.; Li, Y.; Yuan, B. Facile Synthesis of ZnCo2O4 Mesoporous Structures with Enhanced Electrocatalytic Oxygen Evolution Reaction Properties. RSC Adv. 2016, 6, 92699.
[35] Bikkarolla, S. K.; Papakonstantinou, P. CuCo2O4 Nanoparticles on Nitrogenated Graphene as Highly Efficient Oxygen Evolution Catalyst. J. Power Sources 2015, 281, 243-251.
[36] Grewe, T.; Deng, X.; Tüysüz, H. Influence of Fe Doping on Structure and Water Oxidation Activity of Nanocast Co3O4. Chem. Mater. 2014, 26, 3162.
[37] Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. Facile Synthesis of Electrospun MFe2O4 (M=Co, Ni, Cu, Mn) Spinel Nanofibers with Excellent Electrocatalytic Properties for Oxygen Evolution and Hydrogen Peroxide Reduction. Nanoscale 2015, 7, 8920.
[38] Pirogova, G. N.; Panich, N. M.; Korosteleva, R. I.; Voronin, Y. V. ; Popova, N. N. Catalytic Properties of Chromites with a Spinel Structure in the Oxidation of CO and Hydrocarbons and Reduction of Nitrogen Oxides. Russ. Chem. Bull. 2001, 50, 2377-2380.
[39] Fantauzzi, M.; Secci, F.; Angotzi, M. S.; Passiu, C.; Cannas, C.; Rossi, A. Nanostructured Spinel Cobalt Ferrites: Fe and Co Chemical State, Cation Distribution and Size Effect by X-Ray Photoelectron Spectroscopy. RSC Adv. 2019, 9, 19171.
[40] Wang, T.; Chen, H.; Yang, Z.; Liang, J.; Dai, S. High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis. J. Am. Chem. Soc. 2020, 142, 4550-4554.
[41] Ding, Z.; Bian, J.; Shuang, S.; Liu, X.; Hu, Y.; Sun, C.; Yang, Y. High Entropy Intermetallic-Oxide Core-Shell Nanostructure as Superb Oxygen Evolution Reaction Catalyst. Adv. Sustainable Syst. 2020, 4, 1900105.
[42] Wang, F.; Zou, P.; Zhang, Y.; Pan, W.; Li, Y.; Liang, L.; Chen, C.; Liu, H.; Zheng, S. Activating Lattice Oxygen in High-Entropy LDH for Robust and Durable Water Oxidation. Nat. Commun. 2023, 14, 6019.
[43] Tang, J.; Xu, J. L.; Ye, Z. G.; Li, X. B.; Luo, J. M. Microwave Sintered Porous CoCrFeNiMo High Entropy Alloy as an Efficient Electrocatalyst for Alkaline Oxygen Evolution Reaction. J. Mater. Sci. Technol. 2021, 79, 171-177.
[44] Baek, J.; Hossain, M. D.; Mukherjee, P.; Lee, J.; Winther, K. T.; Leem, J.; Jiang, Y.; Chueh, W. C.; Bajdich, M.; Zheng, X. Synergistic Effects of Mixing and Strain in High Entropy Spinel Oxides for Oxygen Evolution Reaction. Nat. Commun. 2023, 14, 5936.
[45] Lai, D.; Kang, Q.; Gao, F.; Liu, Q. Hig-Entropy Effect of a Metal Phosphide on Enhanced Overall Water Splitting Performance. J. Mater. Chem. A 2021, 9, 17913.
[46] Nguyen, T. X.; Su, Y.-H.; Lin, C.-C.; Ruan, J.; Ting, J.-M. A New High Entropy Glycerate for High Performance Oxygen Evolution Reaction. Adv. Sci. 2021, 8, 2002446.
[47] Zhang, L.; Fan, F.; Song, X.; Cai, W.; Ren, J.; Yang, H.; Bao, N. A Novel Septenary High-Entropy (Oxy)Hydroxide Electrocatalyst for Boosted Oxygen Evolution Reaction. J. Materimics 2024, 10, 348-354.
[48] Zhang, L.; Cai, W.; Bao, N. Top-Level Design Strategy to Construct an Advanced High Entropy Co-Cu-Fe-Mo (Oxy)Electrocatalyst for the Oxygen Evolution Reaction. Adv. Mater. 2021, 33, 2100745.
[49] Liu, D.; Yan, X.; Guo, P.; Yang, Y.; He, Y.; Liu, J.; Chen, J.; Pan, H.; Wu, R. Inert Mg Incorporation to Break the Activity/Stability Relationship in High-Entropy Layered Hydroxides for the Electrocatalytic Oxygen Evolution Reaction. ACS Catal. 2023, 13, 7698-7706.
[50] Yao, J.; Wang, F.; He, W.; Li, Y.; Liang, L.; Hao, Q.; Liu, H. Engineering Cation Vacancies in High-Entropy Layered Double Hydroxides for Boosting the Oxygen Evolution Reaction. Chem. Commun. 2023, 59, 3719.
[51] Sun, Y.; Liao, H.; Wang, J.; Chen, B.; Sun, S.; Ong, S. J. H.; Xi, S.; Diao, C.; Du, Y.; Wang, J.-O.; Breese, M. B. H.; Li, S.; Zhang, H.; Xu, Z. J. Covalency Competition Dominates the Water Oxidation Structure-Activity Relationship on Spinel Oxides. Nat. Catal. 2020, 3, 554-563.
[52] Hong, W. T.; Welsch, R. E.; Shao-Horn, Y. Descriptors of Oxygen-Evolution Activity for Oxides: A Statistical Evaluation. J. Phys. Chem. C 2016, 120, 78-86.
[53] Zhao, Z.; Lamoureux, P. S.; Kulkarni, A.; Bajdich, M. Trends in Oxygen Electrocatalysis of 3d-Layered (Oxy) (Hydro)Oxides. ChemCatChem 2019, 11, 3423-3431. [54] Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water Electrolysis on La1-xSrxCoO3-δ Perovskite Electrocatalysts. Nat. Commun. 2016, 7, 11053.
[55] Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries. Nat. Chem. 2011, 3, 546.
[56] Calle-Vallejo, F.; Inoglu, N. G.; Su, H. -Y.; Martínez, J. I.; Man, I. C.; Koper, M. T. M.; Kitchen, J. R.; Rossmeisl, J. Number of Outer Electrons as Descriptor for Adsorption Processes on Transition Metals and their Oxides. Chem. Sci. 2013, 4, 1245.
[57] Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science. 2011, 334, 1383.
[58] Wei, C.; Feng, Z.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels. Adv. Mater. 2017, 29, 1606800.
[59] Gu, G. H.; Choi, C.; Lee, Y.; Situmorang, A. B.; Noh, J.; Kim, Y.-H.; Jung, Y. Progress in Computational and Machine-Learning Methods for Heterogeneous Small-Molecule Activation. Adv. Mater. 2020, 32 (35), 1907865.
[60] Miracle, D. B.; Senkov, O. N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Materialia 2017, 122, 448-511.
[61] Bockris, J. O. Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. J. Chem. Phys. 1956, 24, 817-827.
[62] Cai, Z.; Bu, X.; Wang, P.; Ho, J. C.; Yang, J.; Wang, X. Recent Advances in Layered Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2019, 7, 5069.
[63] Bockris, J. O.; Otagawa, T. Mechanism of Oxygen Evolution on Perovskites. J. Phys. Chem. 1983, 87, 2960-2971.
[64] Negahdar, L.; Zeng, F.; Palkovits, S.; Broicher, C.; Palkovits, R. Mechanistic Aspects of the Electrocatalytic Oxygen Evolution Reaction over Ni-Co Oxides. ChemElectroChem 2019, 6, 5588-5595.
[65] Huang, Z.-F.; Song, J.; Du, Y.; Xi, S.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and Structural Origin of Lattice Oxygen Oxidation in Co–Zn Oxyhydroxide Oxygen Evolution Electrocatalysts. Nat. Energy. 2019, 4, 329-338.
[66] Niu, B.; Zhang, F.; Ping, H.; Li, N.; Zhou, J.; Lei, L.; Xie, J.; Zhang, J.; Wang, W.; Fu, Z. Sol-gel Autocombustion Synthesis of Nanocrystalline High-entropy Alloys. Sci. Rep. 2017, 7, 3421. [67] Blesa, M. C.; Amador, U.; Moran, E.; Menendez, N.; Tornero, J. D.; Rodriguez-Carvajal, J. Synthesis and Characterization of Nickel and Magnesium Ferrites Obtained from α-NaFeO2. Solid State Ion. 1993, 63, 429-436.
[68] Lutterotti, L. Maud: a Rietveld Analysis Program Designed for the Internet and Experiment Integration. Acta Cryst. 2000, 56, 54.
[55] Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries. Nat. Chem. 2011, 3, 546.
[56] Calle-Vallejo, F.; Inoglu, N. G.; Su, H. -Y.; Martínez, J. I.; Man, I. C.; Koper, M. T. M.; Kitchen, J. R.; Rossmeisl, J. Number of Outer Electrons as Descriptor for Adsorption Processes on Transition Metals and their Oxides. Chem. Sci. 2013, 4, 1245.
[57] Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science. 2011, 334, 1383.
[58] Wei, C.; Feng, Z.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels. Adv. Mater. 2017, 29, 1606800.
[59] Gu, G. H.; Choi, C.; Lee, Y.; Situmorang, A. B.; Noh, J.; Kim, Y.-H.; Jung, Y. Progress in Computational and Machine-Learning Methods for Heterogeneous Small-Molecule Activation. Adv. Mater. 2020, 32 (35), 1907865.
[60] Miracle, D. B.; Senkov, O. N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Materialia 2017, 122, 448-511.
[61] Bockris, J. O. Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. J. Chem. Phys. 1956, 24, 817-827.
[62] Cai, Z.; Bu, X.; Wang, P.; Ho, J. C.; Yang, J.; Wang, X. Recent Advances in Layered Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2019, 7, 5069.
[63] Bockris, J. O.; Otagawa, T. Mechanism of Oxygen Evolution on Perovskites. J. Phys. Chem. 1983, 87, 2960-2971.
[64] Negahdar, L.; Zeng, F.; Palkovits, S.; Broicher, C.; Palkovits, R. Mechanistic Aspects of the Electrocatalytic Oxygen Evolution Reaction over Ni-Co Oxides. ChemElectroChem 2019, 6, 5588-5595.
[65] Huang, Z.-F.; Song, J.; Du, Y.; Xi, S.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and Structural Origin of Lattice Oxygen Oxidation in Co–Zn Oxyhydroxide Oxygen Evolution Electrocatalysts. Nat. Energy. 2019, 4, 329-338.
[66] Niu, B.; Zhang, F.; Ping, H.; Li, N.; Zhou, J.; Lei, L.; Xie, J.; Zhang, J.; Wang, W.; Fu, Z. Sol-gel Autocombustion Synthesis of Nanocrystalline High-entropy Alloys. Sci. Rep. 2017, 7, 3421. [67] Blesa, M. C.; Amador, U.; Moran, E.; Menendez, N.; Tornero, J. D.; Rodriguez-Carvajal, J. Synthesis and Characterization of Nickel and Magnesium Ferrites Obtained from α-NaFeO2. Solid State Ion. 1993, 63, 429-436.
[68] Lutterotti, L. Maud: a Rietveld Analysis Program Designed for the Internet and Experiment Integration. Acta Cryst. 2000, 56, 54.
[84] Kao, K. C. Dielectric Phenomena in Solids. Elsevier Academic Press 2004. DOI: 10.1016/B978-012396561-5.
[85] Mukhtar, F.; Riaz, S.; Awan, A.; Rubab, F.; Kayani, Z. N.; Naseem, S. Structural and Magnetization Crossover in Electrodeposited FeAl2O4-Effect of in Situ Oxidation. RSC Adv. 2019, 9, 38185.
[86] Yan, G.; Li, G.; Tan, H.; Gu, Y.; Li, Y. Spinel-Type Ternary Multimetal Hybrid Oxides with Porous Hierarchical Structure Grown on Ni Foam as Large-Current-Density Water Oxidation Electrocatalyst. J. Alloys Compd 2020, 838, 155662.
[87] Evans, E.; Mills, D. Theory of Surface Polarons. Solid State Commun. 1972, 11, 1093-1098.
[88] Licari, J. J.; Evrard, R. Electron-Phonon Interaction in a Dielectric Slab: Effect of the Electronic Polarizability. Phys. Rev. B 1977, 15, 2254-2264.
[89] Robertson, J. High Dielectric Constant Oxides. Eur. Phys. J. Appl. Phys. 2004, 28, 265-291.
[90] Das, S.; Gupta, N. Interfacial Charge Behaviour at Dielectric-Dielectric Interfaces. IEEE Trans on Dielectr Electr Insul IEEE T DIELECT EL IN 2014, 21, 1302-1311.
[91] Saleem, M.; Padole, M.; Mishra, A. Low Dielectric Constant and Signature of Ferroelectric Nature in Transition Metal (Co, Ni, Cu)-Doped Mg0.5Zn0.5Al2O4 Aluminate. J. Adv. Dielectr. 2019, 9, 1950034.
[92] Baker-Jarvis, J.; Kim, S. The Interaction of Radio-Frequency Fields with Dielectric Materials at Macroscopic to Mesoscopic Scales. J. Res. Natl. Inst. Stand. Technol. 2012, 117, 1-53.
[93] Mora-Seró, I.; Fabregat-Santiago, F.; Denier, B.; Bisquert, J.; Tena-Zaera, R.; Elias, J.; Lévy-Clément, C. Determination of Carrier Density of ZnO Nanowires by Electrochemical Techniques. Appl. Surf. Sci. 2006, 89, 203117.
[94] Mercado, C. C.; Zakutayev, A.; Zhu, K.; Flynn, C. J.; Cahoon, J. F.; Nozik, A. J. Sensitized Zinc-Cobalt-Oxide Spinel p-type Photoelectrode. J. Phys. Chem. C 2014, 118, 25340-25349.
[95] Yin, Y.; Zhang, X.; Sun, C. Transition-Metal-Doped Fe2O3 Nanoparticles for Oxygen Evolution Reaction. Prog. Nat. Sci. 2018, 28, 430-436.
[96] Wang, C.; Wei, S.; Li, F.; Long, X.; Wang, T.; Wang, P.; Li, S.; Ma, J.; Jin, J. Activating a Hematite Nanorod Photoanode via Fluorine-Doping and Surface Fluorination for Enhanced Oxygen Evolution Reaction. Nanoscale 2020, 12, 3259.
[97] Li, F.; Li, J.; Gao, L.; Hu, Y.; Long, X.; Wei, S.; Wang, C.; Jin, J.; Ma, J. Construction of an Efficient Hole Migration Pathway on Hematite for Efficient Photoelectrochemical Water Oxidation. J. Mater. Chem. A 2018, 6, 23478.
[98] Smith, A. M.; Lee, A. A.; Perkin, S. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. J. Phys. Chem. Lett. 2016, 7, 2157-2163.
[99] Hemeda, O. M.; Barakat, M. M. Effect of Hopping Rate and Jump Length of Hopping Electrons on Conductivity and Dielectric Properties of Co-Cd Ferrite. J. Magn. Magn. Mater. 2001, 223, 127-132.
[100] Miller, A.; Abrahams, E. Impurity Conduction at Low Concentrations. Phys. Rev. 1960, 120, 745.
[101] Hosseinpour, A.; Sadeghi, H.; Morisako, A. Simulation of DC-Hopping Conduction in Spinel Ferrites Using Free Electron Gas Model. J. Magn. Magn. Mater. 2007, 316, 283-286.
[102] Bosman, A. J.; van Daal, H. J. Small-Polaron versus Band Conduction in Some Transition-Metal Oxides. Adv. Phys. 1970, 19, 1-117.
[103] Iordanova, N.; Dupuis, M.; Rosso, K. M. Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3. J. Chem. Phys. 2005, 122, 144305.
[104] Iordanova, N.; Dupuis, M.; Rosso, K. M. Theoretical Characterization of Charge Transport in Chromia (α-Cr2O3). J. Chem. Phys. 2005, 123, 074710.
[105] Goodenough, J. B.; Loeb, A. L. Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels. Phys. Rev. 1954, 98, 391.
[106] Schwanke, C.; Sterin, H. S.; Xi, L.; Sliozberg, K.; Schuhmann, W.; Ludwig, A.; Lange, K. M. Correlating Oxygen Evolution Catalysis Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx. Sci. Rep. 2017, 7, 44192.
[107] Sari, F. N. I.; Frenel, G.; Lee, A. C.; Huang, Y.-J.; Su, Y.-H.; Ting, J.-M. Multi-High Valence State Metal Doping in NiFe Hydroxide toward Superior Oxygen Evolution Reaction Activity. J. Mater. Chem. A 2023, 11, 2985-2995.
[108] Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamental and Applications. John Wiley & Sons, Inc. New York NY 1980.
[109] Mandula, T. R.; Srinivasan, R. Electrochemical Impedance Spectroscopic Studies on Niobium Anodic Dissolution in HF. J. Solid State Electrochem 2017, 21, 3155-3167.
[110] Gracía-Osorio, D. A.; Jaimes, R.; Vazquez-Arenas, J.; Lara, R. H.; Alvarez-Ramirez, J. The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions: °OH Formation. J. Electrochem. Soc. 2017, 164, E3321-E3328.
[111] Holm, T.; Harrington, D. A. Understanding Reaction Mechanisms Using Dynamic Electrochemical Impedance Spectroscopy: Modeling of Cyclic Voltammetry and Impedance Spectra. ECS Trans 2018, 85, 167-176.
[112] Holm, T.; Sunde, S.; Seland, F.; Harrington, D. A. Understanding Reaction Mechanisms using Dynamic Electrochemical Impedance Spectroscopy: Methanol Oxidation on Pt. Electrochim. Acta 2019, 323, 134764.
[113] Peugeot, A.; Creissen, C. E.; Karapinar, D.; Tran, H. N.; Schreiber, M.; Fontecave, M. Benchmarking of Oxygen Evolution Catalysts on Porous Nickel Supports. Joule 2021, 5, 1281-1300.
[114] Hemmati, K.; Kumar, A.; Jadhav, A. R.; Moradlou, O.; Moshfegh, A. Z.; Lee, H. Nanorod Array-Based Hierachical NiO Microsphere as a Bifunctional Electrocatalyst for a Selective and Corrosion-Resistance Seawater Photo/Electrolysis System. ACS Catal. 2023, 13, 5516-5528.
[115] Wang, F.; Chen, G.; Liu, X.; Chen, F.; Wan, H.; Ni, L.; Zhang, N.; Ma, R.; Qiu, G. Advanced Electrocatalytic Performance of Ni-Based Materials for Oxygen Evolution Reaction. ACS Sustain. Chem. Eng. 2019, 7, 341-349.
[116] Mei, J.; Shang, J.; He, T.; Qi, D.; Kou, L.; Liao, T.; Du, A.; Sun, Z. 2D/2D Black Phosphorous/Nickel Hydroxide Heterostructures for Promoting Oxygen Evolution via Electronic Structure Modulation and Surface Reconstruction. Adv. Energy Mater. 2022, 12, 2201141.
[117] Long, X.; Zhang, L.; Tan, Z.; Zhou, B. Progress on 2D-2D Heterostructured Hybrid Materials for Efficient Electrocatalysis. Energy Adv. 2023, 2, 280-292.
[118] Nsanzimana, J. M. V.; Peng, Y.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An Efficient and Earth-Abundant Oxygen-Evolving Electrocatalyst Based on Amorphous Metal Borides’’, Adv. Energy Mater. 2018, 8, 1701475.
[119] Lyu, S.; Guo, C.; Wang, J.; Li, Z.; Yang, B.; Lei, L.; Wang, L.; Xiao, J.; Zhang, T.; Hou, Y. Exceptional Catalytic Activity of Oxygen Evolution Reaction via Two-Dimensional Graphene Multilayer Confined Metal-Organic Frameworks. Nat. Commun. 2022, 13, 6171.
[120] Liu, Y.; Ying, Y.; Fei, L.; Liu, Y.; Hu, Q.; Zhang, G.; Pang, S. Y.; Lu, W.; Mak, C. L.; Luo, X.; Zhou, L.; Wei, M.; Huang, H. Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. J. Am. Chem. Soc. 2019, 141, 8136-8145.
[121] Park, H.-S.; Yang, J.; Cho, M. K.; Lee, Y.; Cho, S.; Yim, S.-D.; Kim, B.-S.; Jang, J. H.; Song, H.-K. RuO2 Nanocluster as 4-in-1 Electrocatalyst for Hydrogen and Oxygen Electrochemistry. Nano energy 2019, 55, 49-58.
[122] Zhou, Q.; Xu, C.; Hou, J.; Ma, W.; Jian, T.; Yan, S.; Liu, H. Duplex Interpenetrating-Phase FeNiZn and FeNi3 Heterostructure with Low-Gibbs Free Energy Interface Coupling for Highly Efficient Overall Water Splitting. Nano-Micro Letters. 2023, 15, 95.
[123] Zhang, P.; Li, L.; Nordlund, D.; Chen, H.; Fan, L.; Zhang, B.; Sheng, X.; Daniel, Q.; Sun, L. Dendritic Core-Shell Nickel-Iron-Copper Metal/Metal Oxide Electrode for Efficient Electrocatalytic Water Oxidation. Nat. Commun. 2018, 9, 381.
[124] Chen, G.; Zhu, Y.; Chen, H. M.; Hu, Z.; Hung, S.-F.; Ma, N.; Dai, J.; Lin, H.-J.; Chen, C.-T.; Zhou, W.; Shao, Z. An Amorphous Nickel-Iron-Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Adv. Mater. 2019, 31, 1900883.
[125] Yu, F.; Zhou, H.; Huang, Y.; Sun, J.; Qin, F.; Bao, J.; GoddardIII, W. A.; Chen, S.; Ren, Z. High-Performance Bifunctional Porous Non-noble Metal Phosphide Catalyst for Overall Water Splitting. Nat. Commun. 2018, 9, 2551.
[126] Ansilda, R.; Devassy, A. M. C.; Kamalakshan, A.; Jamuna, N. A.; Mandal, S. Plasmon-Exciton Coupling-Assisted Efficient Overall Water Splitting in Alkaline Medium Using a Plexicitonic NiO/Ni Foam Catalyst. ASC Appl. Eng. Mater. 2023, 1, 3108-3121. http://doi.org/10.1021/acsaenm.3c00534.
[127] Kang, M.; Bentley, C. L.; Mefford, J. T.; Chueh, W. C.; Unwin, P. R. Multiscale Analysis of Electrocatalytic Particle Activities: Linking Nanoscale Measurements and Ensemble Behavior. ACS Nano 2023, 17, 21493-21505. http://doi.org/10.1021/acsnano.3c06335.
[128] Lankauf, K.; Cysewska, K.; Karczewski, J.; Mielewczyk-Gryń, A.; Górnicka, K.; Cempura, G.; Chen, M.; Jasńki, P.; Molin, S. MnxCo3-xO4 Spinel Oxides as Efficient Oxygen Evolution Reaction Catalysts in Alkaline Media. Int. J. Hydrogen. Energy 2020, 45, 14867-14879.
[129] Wang, T.; Wu, Y.; Han, Y.; Xu, P.; Pang, Y.; Feng, X.; Yang, H.; Ji, W.; Cheng, T. Hofmann-Type Metal-Organic Framework Nanosheet for Oxygen Evolution. ACS Appl. Nano Mater. 2021, 4, 14161-14168.
[130] Lu, Y.; Li, B.; Xu, N.; Zhou, Z.; Xiao, Y.; Jiang, Y.; Li, T.; Hu, S.; Gong, Y.; Cao, Y. One-atom-thick Hexagonal Boron Nitride Co-catalyst for Eenhanced Oxygen Evolution Reactions. Nat. Commun. 2023, 14, 6965.
指導教授 做實驗 洪緯璿(Kuan-Wen Wang Wei-Hsuan Hung) 審核日期 2024-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明