參考文獻 |
[1] Sapountzi, F. M.; Gracia, J. M.; (Kees-Jan) Weststrate, C. J.; Fredriksson, H. O. A.; (Hans) Niemantsverdriet, J. W. Electrocatalysts for the Generation of Hydrogen, Oxygen and Synthesis Gas. PECS 2017, 58, 1-35.
[2] Scott, K. Electrochemical Methods for Hydrogen Production. RSC, 2020. DOI: 10.1039/9781788016049-00001.
[3] Anantharaj, S.; Ede, S. R.; Karthick, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revising Activity Parameters with a Critical Assessment. Energy Environ. Sci. 2018, 11, 744-771.
[4] Simonov, A.; Goodwin, A. L. Designing Disorder into Crystalline Materials. Nat. Rev. Chem. 2020, 4, 657-673.
[5] Zhang, Y. High Entropy Materials, a Brief Introduction. Springer Nature Singapore Pte Ltd. 2019. DOI: 10.1007/978-981-13-8526-1.
[6] Alvi, S. A. Synthesis and Characterization of High Entropy Alloy and Coating. Licentiate thesis, Department of Engineering Sciences and Mathematics, Division of Material Science, Luleå University of Technology 2019. ISBN: 978-91-7790-395-6.
[7] Yeh, J. Recent Progress in High-Entropy Alloys. Eur J Control 2006, 31, 633-648. DOI: 10.3166/acsm.31.633-648.
[8] Miracle, D. B.; Senkov, O. N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Mater. 2016, 122, 448-511.
[9] Walsh, A.; Wei, S.-H.; Yan, Y.; Al-Jassim, M. M.; Turner, J. A. Structural, Magnetic, and Electronic Properties of the Co-Fe-Al Oxide Spinel System: Density Functional Theory Calculations. Phys. Rev. B 2007, 76, 165119.
[10] Bockris, J. O′M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry. Kluwer Academic Publishers 2002. DOI: 10.1007/b113922.
[11] Li, X.; Hao, X.; Abudula, A.; Guan, G. Nanostructured catalysts for electrochemical water splitting: current state and prospects. J. Mater. Chem. A. 2016, 4, 11973-11995.
[12] Li, Y.; Guo, S. Noble metal-based 1D and 2D electrocatalytic nanomaterial: Recent progress, challenges and perspectives. Nano Today 2019, 28, 100774.
[13] Anantharaj, S.; Ede, S. R.; Karthic, K.; Sankar, S. S.; Sangeetha, K.; Karthik, P. E.; Kundu, S. Precision and Correctness in the Evaluation of Electrocatalytic Watersplitting: Revisiting Activity Parameters with a Critical Assessment. Energy Environ. Sci. 2018, 11, 744.
[14] Read, C. G.; Callejas, J. F.; Holder, C. F.; Schaak, R. E. General Strategy for Synthesis of Transition Metal Phosphide Films for Electrocatalytic Hydrogen and Oxygen Evolution. ACS Appl. Mater. Interfaces 2016, 8, 12798-12803.
[15] Yang, Y.; Fei, H.; Ruan, G.; Tour, J. M. Porous Cobalt-Based Thin Film as a Bifunctional Catalyst for Hydrogen Generation and Oxygen Generation. Adv. Mater. 2015, 27, 3175-3180.
[16] Liu, M.; Li, J. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen. ACS Appl. Mater. Interfaces. 2016, 8, 2158-2165.
[17] Chang, J.; Liang, L.; Li, C.; Wang, M.; Ge, J.; Liu, C.; Xing, W. Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Catalysts for a Water Electrolysis Cell and the Origin for Cell Performance Degradation. Green Chem. 2016, 18, 2287-2298.
[18] Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. J. Am. Chem. Soc. 2012, 134, 17253-17261.
[19] Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1702774.
[20] Calle-Vallejo, F.; Koper, M. T.; Bandarenka, A. S. Tailoring the Catalytic Activity of Electrodes with Monolayer Amount of Foreign Metals. Chem. Soc. Rev. 2013, 42, 5210.
[21] Stephens, I. E.; Bondarenko, A. S.; Perez-Alonso, F. J.; Calle-Vallejo, F.; Bech, L.; Johansson, T. P.; Jepsen, A. K.; Frydendal, R.; Knudsen, B. P.; Rossmeisl, J. Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying. J. Am. Chem. Soc. 2011, 133, 5485.
[22] Bligaard, T.; Nørskov, J. K. Ligand Effect in Heterogeneous Catalysis and Electrochemistry. Electrochim. Acta 2007, 52, 5512-5516.
[23] Xu, Z.; Kitchin, J. R. Relationships Between the Surface Electronic and Chemical Properties of Doped 4d and 5d Late Transition Metal Dioxide. J. Chem. Phys. 2015, 142, 104703.
[24] Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of Strain and Ligand Effects in the Modification of the Electronic and Chemical Properties of Bimetallic Surfaces. Phys. Rev. Lett. 2004, 93, 156801.
[25] Gerken, J. B.; Shaner, S. E.; Massé, R. C.; Porubsky, N. J.; Stahl, S. S. A Survey of Diverse Earth Abundant Oxygen Evolution Electrocatalysts Showing Enhanced Activity from Ni-Fe Oxides Containing a Third Metal. Energy Environm. Sci. 2014, 7, 2376-2382.
[26] Zhou, X.; Yang, T.; Li, T.; Zi, Y.; Zhang, S.; Yang, L.; Liu, Y.; Yang, J. ; Tang, J. In-Situ Fabrication of Carbon Compound NiFeMo-P Anchored on Nickel Foam as Bifunctional Catalyst for Boosting Overall Water Splitting. Nano Res. Energy 2023, 2, e9120086.
[27] Bhoi, U.; Ray, S.; Bhand, S.; Ninawe, P.; Roy, D.; Rana, S.; Tarafder, K.; Ballav, N. Distal Synergistic Effect in Bimetal-Organic Framework for Superior Catalytic Water Oxidation. ACS Energy Lett. 2023, 8, 4465-4473.
[28] Kumar, A.; Purkayastha, S. K.; Guha, A. K.; Das, M. R.; Deka, S. Designing Nanoarchitecture of NiCu Dealloyed Nanoparticles on Hierarchical Co Nanosheet for Alkaline Overali. ACS Catal. 2023, 13, 10615-10626.
[29] Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337-365.
[30] Nikolov, I.; Darkaoui, R.; Zhecheva, E.; Stoyanova, R.; Dimitrov, N.; Vitanov, T. Electrocatalytic Activity of Spinel Related Cobalties MxCo3-xO4 (M=Li, Ni, Cu) in the Oxygen Evolution Reaction. J. Electroanal. Chem. 1997, 429, 157.
[31] Haenen, J.; Visscher, W.; Barendrecht, E. Characterization of NiCo2O4 Electrodes for O2 Evolution: Part III. Ageing Phenomena of NiCo2O4 Elctrodes. J. Electroanal. Chem. 1986, 208, 323-341.
[32] Hamdani, M.; Singh, R. N.; Chartier, P. Co3O4 and Co-Based Spinel oxides Bifunctional Oxygen Electrodes. J. Electrochem. Sci. 2010, 5, 556.
[33] Maitra, U.; Naidu, B. S.; Govindaraj, A.; Rao, C. N. R. Importance of Trivalency and the e1g Configuration in the Photocatalytic Oxidation of Water by Mn and Co Oxides. Natl. Acad. Sci. 2013, 110, 11704.
[34] Zhang, J.; Zhang, D.; Yang, Y.; Ma, J.; Cui, S.; Li, Y.; Yuan, B. Facile Synthesis of ZnCo2O4 Mesoporous Structures with Enhanced Electrocatalytic Oxygen Evolution Reaction Properties. RSC Adv. 2016, 6, 92699.
[35] Bikkarolla, S. K.; Papakonstantinou, P. CuCo2O4 Nanoparticles on Nitrogenated Graphene as Highly Efficient Oxygen Evolution Catalyst. J. Power Sources 2015, 281, 243-251.
[36] Grewe, T.; Deng, X.; Tüysüz, H. Influence of Fe Doping on Structure and Water Oxidation Activity of Nanocast Co3O4. Chem. Mater. 2014, 26, 3162.
[37] Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. Facile Synthesis of Electrospun MFe2O4 (M=Co, Ni, Cu, Mn) Spinel Nanofibers with Excellent Electrocatalytic Properties for Oxygen Evolution and Hydrogen Peroxide Reduction. Nanoscale 2015, 7, 8920.
[38] Pirogova, G. N.; Panich, N. M.; Korosteleva, R. I.; Voronin, Y. V. ; Popova, N. N. Catalytic Properties of Chromites with a Spinel Structure in the Oxidation of CO and Hydrocarbons and Reduction of Nitrogen Oxides. Russ. Chem. Bull. 2001, 50, 2377-2380.
[39] Fantauzzi, M.; Secci, F.; Angotzi, M. S.; Passiu, C.; Cannas, C.; Rossi, A. Nanostructured Spinel Cobalt Ferrites: Fe and Co Chemical State, Cation Distribution and Size Effect by X-Ray Photoelectron Spectroscopy. RSC Adv. 2019, 9, 19171.
[40] Wang, T.; Chen, H.; Yang, Z.; Liang, J.; Dai, S. High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis. J. Am. Chem. Soc. 2020, 142, 4550-4554.
[41] Ding, Z.; Bian, J.; Shuang, S.; Liu, X.; Hu, Y.; Sun, C.; Yang, Y. High Entropy Intermetallic-Oxide Core-Shell Nanostructure as Superb Oxygen Evolution Reaction Catalyst. Adv. Sustainable Syst. 2020, 4, 1900105.
[42] Wang, F.; Zou, P.; Zhang, Y.; Pan, W.; Li, Y.; Liang, L.; Chen, C.; Liu, H.; Zheng, S. Activating Lattice Oxygen in High-Entropy LDH for Robust and Durable Water Oxidation. Nat. Commun. 2023, 14, 6019.
[43] Tang, J.; Xu, J. L.; Ye, Z. G.; Li, X. B.; Luo, J. M. Microwave Sintered Porous CoCrFeNiMo High Entropy Alloy as an Efficient Electrocatalyst for Alkaline Oxygen Evolution Reaction. J. Mater. Sci. Technol. 2021, 79, 171-177.
[44] Baek, J.; Hossain, M. D.; Mukherjee, P.; Lee, J.; Winther, K. T.; Leem, J.; Jiang, Y.; Chueh, W. C.; Bajdich, M.; Zheng, X. Synergistic Effects of Mixing and Strain in High Entropy Spinel Oxides for Oxygen Evolution Reaction. Nat. Commun. 2023, 14, 5936.
[45] Lai, D.; Kang, Q.; Gao, F.; Liu, Q. Hig-Entropy Effect of a Metal Phosphide on Enhanced Overall Water Splitting Performance. J. Mater. Chem. A 2021, 9, 17913.
[46] Nguyen, T. X.; Su, Y.-H.; Lin, C.-C.; Ruan, J.; Ting, J.-M. A New High Entropy Glycerate for High Performance Oxygen Evolution Reaction. Adv. Sci. 2021, 8, 2002446.
[47] Zhang, L.; Fan, F.; Song, X.; Cai, W.; Ren, J.; Yang, H.; Bao, N. A Novel Septenary High-Entropy (Oxy)Hydroxide Electrocatalyst for Boosted Oxygen Evolution Reaction. J. Materimics 2024, 10, 348-354.
[48] Zhang, L.; Cai, W.; Bao, N. Top-Level Design Strategy to Construct an Advanced High Entropy Co-Cu-Fe-Mo (Oxy)Electrocatalyst for the Oxygen Evolution Reaction. Adv. Mater. 2021, 33, 2100745.
[49] Liu, D.; Yan, X.; Guo, P.; Yang, Y.; He, Y.; Liu, J.; Chen, J.; Pan, H.; Wu, R. Inert Mg Incorporation to Break the Activity/Stability Relationship in High-Entropy Layered Hydroxides for the Electrocatalytic Oxygen Evolution Reaction. ACS Catal. 2023, 13, 7698-7706.
[50] Yao, J.; Wang, F.; He, W.; Li, Y.; Liang, L.; Hao, Q.; Liu, H. Engineering Cation Vacancies in High-Entropy Layered Double Hydroxides for Boosting the Oxygen Evolution Reaction. Chem. Commun. 2023, 59, 3719.
[51] Sun, Y.; Liao, H.; Wang, J.; Chen, B.; Sun, S.; Ong, S. J. H.; Xi, S.; Diao, C.; Du, Y.; Wang, J.-O.; Breese, M. B. H.; Li, S.; Zhang, H.; Xu, Z. J. Covalency Competition Dominates the Water Oxidation Structure-Activity Relationship on Spinel Oxides. Nat. Catal. 2020, 3, 554-563.
[52] Hong, W. T.; Welsch, R. E.; Shao-Horn, Y. Descriptors of Oxygen-Evolution Activity for Oxides: A Statistical Evaluation. J. Phys. Chem. C 2016, 120, 78-86.
[53] Zhao, Z.; Lamoureux, P. S.; Kulkarni, A.; Bajdich, M. Trends in Oxygen Electrocatalysis of 3d-Layered (Oxy) (Hydro)Oxides. ChemCatChem 2019, 11, 3423-3431. [54] Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water Electrolysis on La1-xSrxCoO3-δ Perovskite Electrocatalysts. Nat. Commun. 2016, 7, 11053.
[55] Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries. Nat. Chem. 2011, 3, 546.
[56] Calle-Vallejo, F.; Inoglu, N. G.; Su, H. -Y.; Martínez, J. I.; Man, I. C.; Koper, M. T. M.; Kitchen, J. R.; Rossmeisl, J. Number of Outer Electrons as Descriptor for Adsorption Processes on Transition Metals and their Oxides. Chem. Sci. 2013, 4, 1245.
[57] Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science. 2011, 334, 1383.
[58] Wei, C.; Feng, Z.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels. Adv. Mater. 2017, 29, 1606800.
[59] Gu, G. H.; Choi, C.; Lee, Y.; Situmorang, A. B.; Noh, J.; Kim, Y.-H.; Jung, Y. Progress in Computational and Machine-Learning Methods for Heterogeneous Small-Molecule Activation. Adv. Mater. 2020, 32 (35), 1907865.
[60] Miracle, D. B.; Senkov, O. N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Materialia 2017, 122, 448-511.
[61] Bockris, J. O. Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. J. Chem. Phys. 1956, 24, 817-827.
[62] Cai, Z.; Bu, X.; Wang, P.; Ho, J. C.; Yang, J.; Wang, X. Recent Advances in Layered Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2019, 7, 5069.
[63] Bockris, J. O.; Otagawa, T. Mechanism of Oxygen Evolution on Perovskites. J. Phys. Chem. 1983, 87, 2960-2971.
[64] Negahdar, L.; Zeng, F.; Palkovits, S.; Broicher, C.; Palkovits, R. Mechanistic Aspects of the Electrocatalytic Oxygen Evolution Reaction over Ni-Co Oxides. ChemElectroChem 2019, 6, 5588-5595.
[65] Huang, Z.-F.; Song, J.; Du, Y.; Xi, S.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and Structural Origin of Lattice Oxygen Oxidation in Co–Zn Oxyhydroxide Oxygen Evolution Electrocatalysts. Nat. Energy. 2019, 4, 329-338.
[66] Niu, B.; Zhang, F.; Ping, H.; Li, N.; Zhou, J.; Lei, L.; Xie, J.; Zhang, J.; Wang, W.; Fu, Z. Sol-gel Autocombustion Synthesis of Nanocrystalline High-entropy Alloys. Sci. Rep. 2017, 7, 3421. [67] Blesa, M. C.; Amador, U.; Moran, E.; Menendez, N.; Tornero, J. D.; Rodriguez-Carvajal, J. Synthesis and Characterization of Nickel and Magnesium Ferrites Obtained from α-NaFeO2. Solid State Ion. 1993, 63, 429-436.
[68] Lutterotti, L. Maud: a Rietveld Analysis Program Designed for the Internet and Experiment Integration. Acta Cryst. 2000, 56, 54.
[55] Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries. Nat. Chem. 2011, 3, 546.
[56] Calle-Vallejo, F.; Inoglu, N. G.; Su, H. -Y.; Martínez, J. I.; Man, I. C.; Koper, M. T. M.; Kitchen, J. R.; Rossmeisl, J. Number of Outer Electrons as Descriptor for Adsorption Processes on Transition Metals and their Oxides. Chem. Sci. 2013, 4, 1245.
[57] Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science. 2011, 334, 1383.
[58] Wei, C.; Feng, Z.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels. Adv. Mater. 2017, 29, 1606800.
[59] Gu, G. H.; Choi, C.; Lee, Y.; Situmorang, A. B.; Noh, J.; Kim, Y.-H.; Jung, Y. Progress in Computational and Machine-Learning Methods for Heterogeneous Small-Molecule Activation. Adv. Mater. 2020, 32 (35), 1907865.
[60] Miracle, D. B.; Senkov, O. N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Materialia 2017, 122, 448-511.
[61] Bockris, J. O. Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen. J. Chem. Phys. 1956, 24, 817-827.
[62] Cai, Z.; Bu, X.; Wang, P.; Ho, J. C.; Yang, J.; Wang, X. Recent Advances in Layered Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2019, 7, 5069.
[63] Bockris, J. O.; Otagawa, T. Mechanism of Oxygen Evolution on Perovskites. J. Phys. Chem. 1983, 87, 2960-2971.
[64] Negahdar, L.; Zeng, F.; Palkovits, S.; Broicher, C.; Palkovits, R. Mechanistic Aspects of the Electrocatalytic Oxygen Evolution Reaction over Ni-Co Oxides. ChemElectroChem 2019, 6, 5588-5595.
[65] Huang, Z.-F.; Song, J.; Du, Y.; Xi, S.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and Structural Origin of Lattice Oxygen Oxidation in Co–Zn Oxyhydroxide Oxygen Evolution Electrocatalysts. Nat. Energy. 2019, 4, 329-338.
[66] Niu, B.; Zhang, F.; Ping, H.; Li, N.; Zhou, J.; Lei, L.; Xie, J.; Zhang, J.; Wang, W.; Fu, Z. Sol-gel Autocombustion Synthesis of Nanocrystalline High-entropy Alloys. Sci. Rep. 2017, 7, 3421. [67] Blesa, M. C.; Amador, U.; Moran, E.; Menendez, N.; Tornero, J. D.; Rodriguez-Carvajal, J. Synthesis and Characterization of Nickel and Magnesium Ferrites Obtained from α-NaFeO2. Solid State Ion. 1993, 63, 429-436.
[68] Lutterotti, L. Maud: a Rietveld Analysis Program Designed for the Internet and Experiment Integration. Acta Cryst. 2000, 56, 54.
[84] Kao, K. C. Dielectric Phenomena in Solids. Elsevier Academic Press 2004. DOI: 10.1016/B978-012396561-5.
[85] Mukhtar, F.; Riaz, S.; Awan, A.; Rubab, F.; Kayani, Z. N.; Naseem, S. Structural and Magnetization Crossover in Electrodeposited FeAl2O4-Effect of in Situ Oxidation. RSC Adv. 2019, 9, 38185.
[86] Yan, G.; Li, G.; Tan, H.; Gu, Y.; Li, Y. Spinel-Type Ternary Multimetal Hybrid Oxides with Porous Hierarchical Structure Grown on Ni Foam as Large-Current-Density Water Oxidation Electrocatalyst. J. Alloys Compd 2020, 838, 155662.
[87] Evans, E.; Mills, D. Theory of Surface Polarons. Solid State Commun. 1972, 11, 1093-1098.
[88] Licari, J. J.; Evrard, R. Electron-Phonon Interaction in a Dielectric Slab: Effect of the Electronic Polarizability. Phys. Rev. B 1977, 15, 2254-2264.
[89] Robertson, J. High Dielectric Constant Oxides. Eur. Phys. J. Appl. Phys. 2004, 28, 265-291.
[90] Das, S.; Gupta, N. Interfacial Charge Behaviour at Dielectric-Dielectric Interfaces. IEEE Trans on Dielectr Electr Insul IEEE T DIELECT EL IN 2014, 21, 1302-1311.
[91] Saleem, M.; Padole, M.; Mishra, A. Low Dielectric Constant and Signature of Ferroelectric Nature in Transition Metal (Co, Ni, Cu)-Doped Mg0.5Zn0.5Al2O4 Aluminate. J. Adv. Dielectr. 2019, 9, 1950034.
[92] Baker-Jarvis, J.; Kim, S. The Interaction of Radio-Frequency Fields with Dielectric Materials at Macroscopic to Mesoscopic Scales. J. Res. Natl. Inst. Stand. Technol. 2012, 117, 1-53.
[93] Mora-Seró, I.; Fabregat-Santiago, F.; Denier, B.; Bisquert, J.; Tena-Zaera, R.; Elias, J.; Lévy-Clément, C. Determination of Carrier Density of ZnO Nanowires by Electrochemical Techniques. Appl. Surf. Sci. 2006, 89, 203117.
[94] Mercado, C. C.; Zakutayev, A.; Zhu, K.; Flynn, C. J.; Cahoon, J. F.; Nozik, A. J. Sensitized Zinc-Cobalt-Oxide Spinel p-type Photoelectrode. J. Phys. Chem. C 2014, 118, 25340-25349.
[95] Yin, Y.; Zhang, X.; Sun, C. Transition-Metal-Doped Fe2O3 Nanoparticles for Oxygen Evolution Reaction. Prog. Nat. Sci. 2018, 28, 430-436.
[96] Wang, C.; Wei, S.; Li, F.; Long, X.; Wang, T.; Wang, P.; Li, S.; Ma, J.; Jin, J. Activating a Hematite Nanorod Photoanode via Fluorine-Doping and Surface Fluorination for Enhanced Oxygen Evolution Reaction. Nanoscale 2020, 12, 3259.
[97] Li, F.; Li, J.; Gao, L.; Hu, Y.; Long, X.; Wei, S.; Wang, C.; Jin, J.; Ma, J. Construction of an Efficient Hole Migration Pathway on Hematite for Efficient Photoelectrochemical Water Oxidation. J. Mater. Chem. A 2018, 6, 23478.
[98] Smith, A. M.; Lee, A. A.; Perkin, S. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. J. Phys. Chem. Lett. 2016, 7, 2157-2163.
[99] Hemeda, O. M.; Barakat, M. M. Effect of Hopping Rate and Jump Length of Hopping Electrons on Conductivity and Dielectric Properties of Co-Cd Ferrite. J. Magn. Magn. Mater. 2001, 223, 127-132.
[100] Miller, A.; Abrahams, E. Impurity Conduction at Low Concentrations. Phys. Rev. 1960, 120, 745.
[101] Hosseinpour, A.; Sadeghi, H.; Morisako, A. Simulation of DC-Hopping Conduction in Spinel Ferrites Using Free Electron Gas Model. J. Magn. Magn. Mater. 2007, 316, 283-286.
[102] Bosman, A. J.; van Daal, H. J. Small-Polaron versus Band Conduction in Some Transition-Metal Oxides. Adv. Phys. 1970, 19, 1-117.
[103] Iordanova, N.; Dupuis, M.; Rosso, K. M. Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3. J. Chem. Phys. 2005, 122, 144305.
[104] Iordanova, N.; Dupuis, M.; Rosso, K. M. Theoretical Characterization of Charge Transport in Chromia (α-Cr2O3). J. Chem. Phys. 2005, 123, 074710.
[105] Goodenough, J. B.; Loeb, A. L. Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels. Phys. Rev. 1954, 98, 391.
[106] Schwanke, C.; Sterin, H. S.; Xi, L.; Sliozberg, K.; Schuhmann, W.; Ludwig, A.; Lange, K. M. Correlating Oxygen Evolution Catalysis Activity and Electronic Structure by a High-Throughput Investigation of Ni1-y-zFeyCrzOx. Sci. Rep. 2017, 7, 44192.
[107] Sari, F. N. I.; Frenel, G.; Lee, A. C.; Huang, Y.-J.; Su, Y.-H.; Ting, J.-M. Multi-High Valence State Metal Doping in NiFe Hydroxide toward Superior Oxygen Evolution Reaction Activity. J. Mater. Chem. A 2023, 11, 2985-2995.
[108] Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamental and Applications. John Wiley & Sons, Inc. New York NY 1980.
[109] Mandula, T. R.; Srinivasan, R. Electrochemical Impedance Spectroscopic Studies on Niobium Anodic Dissolution in HF. J. Solid State Electrochem 2017, 21, 3155-3167.
[110] Gracía-Osorio, D. A.; Jaimes, R.; Vazquez-Arenas, J.; Lara, R. H.; Alvarez-Ramirez, J. The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions: °OH Formation. J. Electrochem. Soc. 2017, 164, E3321-E3328.
[111] Holm, T.; Harrington, D. A. Understanding Reaction Mechanisms Using Dynamic Electrochemical Impedance Spectroscopy: Modeling of Cyclic Voltammetry and Impedance Spectra. ECS Trans 2018, 85, 167-176.
[112] Holm, T.; Sunde, S.; Seland, F.; Harrington, D. A. Understanding Reaction Mechanisms using Dynamic Electrochemical Impedance Spectroscopy: Methanol Oxidation on Pt. Electrochim. Acta 2019, 323, 134764.
[113] Peugeot, A.; Creissen, C. E.; Karapinar, D.; Tran, H. N.; Schreiber, M.; Fontecave, M. Benchmarking of Oxygen Evolution Catalysts on Porous Nickel Supports. Joule 2021, 5, 1281-1300.
[114] Hemmati, K.; Kumar, A.; Jadhav, A. R.; Moradlou, O.; Moshfegh, A. Z.; Lee, H. Nanorod Array-Based Hierachical NiO Microsphere as a Bifunctional Electrocatalyst for a Selective and Corrosion-Resistance Seawater Photo/Electrolysis System. ACS Catal. 2023, 13, 5516-5528.
[115] Wang, F.; Chen, G.; Liu, X.; Chen, F.; Wan, H.; Ni, L.; Zhang, N.; Ma, R.; Qiu, G. Advanced Electrocatalytic Performance of Ni-Based Materials for Oxygen Evolution Reaction. ACS Sustain. Chem. Eng. 2019, 7, 341-349.
[116] Mei, J.; Shang, J.; He, T.; Qi, D.; Kou, L.; Liao, T.; Du, A.; Sun, Z. 2D/2D Black Phosphorous/Nickel Hydroxide Heterostructures for Promoting Oxygen Evolution via Electronic Structure Modulation and Surface Reconstruction. Adv. Energy Mater. 2022, 12, 2201141.
[117] Long, X.; Zhang, L.; Tan, Z.; Zhou, B. Progress on 2D-2D Heterostructured Hybrid Materials for Efficient Electrocatalysis. Energy Adv. 2023, 2, 280-292.
[118] Nsanzimana, J. M. V.; Peng, Y.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An Efficient and Earth-Abundant Oxygen-Evolving Electrocatalyst Based on Amorphous Metal Borides’’, Adv. Energy Mater. 2018, 8, 1701475.
[119] Lyu, S.; Guo, C.; Wang, J.; Li, Z.; Yang, B.; Lei, L.; Wang, L.; Xiao, J.; Zhang, T.; Hou, Y. Exceptional Catalytic Activity of Oxygen Evolution Reaction via Two-Dimensional Graphene Multilayer Confined Metal-Organic Frameworks. Nat. Commun. 2022, 13, 6171.
[120] Liu, Y.; Ying, Y.; Fei, L.; Liu, Y.; Hu, Q.; Zhang, G.; Pang, S. Y.; Lu, W.; Mak, C. L.; Luo, X.; Zhou, L.; Wei, M.; Huang, H. Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. J. Am. Chem. Soc. 2019, 141, 8136-8145.
[121] Park, H.-S.; Yang, J.; Cho, M. K.; Lee, Y.; Cho, S.; Yim, S.-D.; Kim, B.-S.; Jang, J. H.; Song, H.-K. RuO2 Nanocluster as 4-in-1 Electrocatalyst for Hydrogen and Oxygen Electrochemistry. Nano energy 2019, 55, 49-58.
[122] Zhou, Q.; Xu, C.; Hou, J.; Ma, W.; Jian, T.; Yan, S.; Liu, H. Duplex Interpenetrating-Phase FeNiZn and FeNi3 Heterostructure with Low-Gibbs Free Energy Interface Coupling for Highly Efficient Overall Water Splitting. Nano-Micro Letters. 2023, 15, 95.
[123] Zhang, P.; Li, L.; Nordlund, D.; Chen, H.; Fan, L.; Zhang, B.; Sheng, X.; Daniel, Q.; Sun, L. Dendritic Core-Shell Nickel-Iron-Copper Metal/Metal Oxide Electrode for Efficient Electrocatalytic Water Oxidation. Nat. Commun. 2018, 9, 381.
[124] Chen, G.; Zhu, Y.; Chen, H. M.; Hu, Z.; Hung, S.-F.; Ma, N.; Dai, J.; Lin, H.-J.; Chen, C.-T.; Zhou, W.; Shao, Z. An Amorphous Nickel-Iron-Based Electrocatalyst with Unusual Local Structures for Ultrafast Oxygen Evolution Reaction. Adv. Mater. 2019, 31, 1900883.
[125] Yu, F.; Zhou, H.; Huang, Y.; Sun, J.; Qin, F.; Bao, J.; GoddardIII, W. A.; Chen, S.; Ren, Z. High-Performance Bifunctional Porous Non-noble Metal Phosphide Catalyst for Overall Water Splitting. Nat. Commun. 2018, 9, 2551.
[126] Ansilda, R.; Devassy, A. M. C.; Kamalakshan, A.; Jamuna, N. A.; Mandal, S. Plasmon-Exciton Coupling-Assisted Efficient Overall Water Splitting in Alkaline Medium Using a Plexicitonic NiO/Ni Foam Catalyst. ASC Appl. Eng. Mater. 2023, 1, 3108-3121. http://doi.org/10.1021/acsaenm.3c00534.
[127] Kang, M.; Bentley, C. L.; Mefford, J. T.; Chueh, W. C.; Unwin, P. R. Multiscale Analysis of Electrocatalytic Particle Activities: Linking Nanoscale Measurements and Ensemble Behavior. ACS Nano 2023, 17, 21493-21505. http://doi.org/10.1021/acsnano.3c06335.
[128] Lankauf, K.; Cysewska, K.; Karczewski, J.; Mielewczyk-Gryń, A.; Górnicka, K.; Cempura, G.; Chen, M.; Jasńki, P.; Molin, S. MnxCo3-xO4 Spinel Oxides as Efficient Oxygen Evolution Reaction Catalysts in Alkaline Media. Int. J. Hydrogen. Energy 2020, 45, 14867-14879.
[129] Wang, T.; Wu, Y.; Han, Y.; Xu, P.; Pang, Y.; Feng, X.; Yang, H.; Ji, W.; Cheng, T. Hofmann-Type Metal-Organic Framework Nanosheet for Oxygen Evolution. ACS Appl. Nano Mater. 2021, 4, 14161-14168.
[130] Lu, Y.; Li, B.; Xu, N.; Zhou, Z.; Xiao, Y.; Jiang, Y.; Li, T.; Hu, S.; Gong, Y.; Cao, Y. One-atom-thick Hexagonal Boron Nitride Co-catalyst for Eenhanced Oxygen Evolution Reactions. Nat. Commun. 2023, 14, 6965. |