參考文獻 |
[1] Xiang, K.; Song, Z.; Wu, D.; Deng, X.; Wang, X.; You, W.; Peng, Z.; Wang, L.; Luo, J. L.; Fu, X. Z. Bifunctional Pt–Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis. J. Mater. Chem. A. 2021, 9, 6316-6324.
[2] Wu, L.; Yu, L.; Zhu, Q.; McElhenny, B.; Zhang, F.; Wu, C.; Xing, X.; Bao, J.; Chen, S.; Ren, Z. Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. Nano Energy. 2021, 83, 105838.
[3] Li, J.; Liu, Y.; Chen, H.; Zhang, Z.; Zou, X. Design of a multilayered oxygen‐evolution electrode with high catalytic activity and corrosion resistance for saline water splitting. Adv. Funct. Mater. 2021, 31, 2101820.
[4] Cui, B.; Hu, Z.; Liu, C.; Liu, S.; Chen, F.; Hu, S.; Zhang, J.; Zhou, W.; Deng, Y.; Qin, Z. Heterogeneous lamellar-edged Fe-Ni (OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149-1155.
[5] Zang, W.; Sun, T.; Yang, T.; Xi, S.; Waqar, M.; Kou, Z.; Lyu, Z.; Feng, Y. P.; Wang, J.; Pennycook, S. J. Efficient hydrogen evolution of oxidized Ni‐N3 defective sites for alkaline freshwater and seawater electrolysis. Adv. Mater. 2021, 33, 2003846.
[6] Li, R.; Xu, J.; Ba, J.; Li, Y.; Liang, C.; Tang, T. Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions. Int. J. Hydrogen Energy. 2018, 43, 7956-7963.
[7] Ali, Y.; Nguyen, V. T.; Nguyen, N. A.; Shin, S.; Choi, H. S. Transition-metal-based NiCoS/C-dot nanoflower as a stable electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy. 2019, 44, 8214-8222.
[8] Zhao, Y.; Wang, X.; Cheng, G.; Luo, W. Phosphorus-induced activation of ruthenium for boosting hydrogen oxidation and evolution electrocatalysis. ACS Catal. 2020, 10, 11751-11757.
[9] Zhu, S.; Qin, X.; Xiao, F.; Yang, S.; Xu, Y.; Tan, Z.; Li, J.; Yan, J.; Chen, Q.; Chen, M. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711-718.
[10] Yang, Y.; Wu, D.; Yu, Y.; Li, J.; Rao, P.; Jia, C.; Liu, Z.; Chen, Q.; Huang, W.; Luo, J. Bridge the activity and durability of Ruthenium for hydrogen evolution reaction with the RuOC link. Chem. Eng. J. 2022, 433, 134421.
[11] Wang, S.; Wang, M.; Liu, Z.; Liu, S.; Chen, Y.; Li, M.; Zhang, H.; Wu, Q.; Guo, J.; Feng, X. Synergetic function of the single-atom Ru–N4 site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis. ACS Appl. Mater. Interfaces. 2022, 14, 15250-15258.
[12] Zhang, Z.; Li, P.; Wang, Q.; Feng, Q.; Tao, Y.; Xu, J.; Jiang, C.; Lu, X.; Fan, J.; Gu, M. Mo modulation effect on the hydrogen binding energy of hexagonal-close-packed Ru for hydrogen evolution. J. Mater. Chem. A. 2019, 7, 2780-2786.
[13] Sriphathoorat, R.; Wang, K.; Luo, S.; Tang, M.; Du, H.; Du, X.; Shen, P. K. Well-defined PtNiCo core–shell nanodendrites with enhanced catalytic performance for methanol oxidation. J. Mater. Chem. A. 2016, 4, 18015-18021.
[14] Chen, Y.; Zheng, X. X.; Huang, X. Y.; Wang, A. J.; Zhang, Q. L.; Huang, H.; Feng, J.-J. Trimetallic PtRhCo petal-assembled alloyed nanoflowers as efficient and stable bifunctional electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions. J. Colloid Interface Sci. 2020, 559, 206-214.
[15] Jia, Y.; Zhang, Y.; Xu, H.; Li, J.; Gao, M.; Yang, X. Recent Advances in Doping Strategies to Improve Electrocatalytic Hydrogen Evolution Performance of Molybdenum Disulfide. ACS Catal. 2024, 14, 4601-4637.
[16] Li, Y.; Feng, L. Recent advances and perspectives in Ru hybrid electrocatalysts for the hydrogen evolution reaction. Energy Fuels. 2023, 37, 8079-8098.
[17] Dubouis, N.; Grimaud, A. The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 2019, 10, 9165-9181.
[18] Yoo, R. M.; Yesudoss, D.; Johnson, D.; Djire, A. A Review on the Application of In-Situ Raman Spectroelectrochemistry to Understand the Mechanisms of Hydrogen Evolution Reaction. ACS Catal. 2023, 13, 10570-10601.
[19] Li, D.; Liu, H.; Feng, L. A review on advanced FeNi-based catalysts for water splitting reaction. Energy Fuels. 2020, 34, 13491-13522.
[20] Jin, J.; Yin, J.; Liu, H.; Huang, B.; Hu, Y.; Zhang, H.; Sun, M.; Peng, Y.; Xi, P.; Yan, C. H. Atomic sulfur filling oxygen vacancies optimizes H absorption and boosts the hydrogen evolution reaction in alkaline media. Angew. Chem. 2021, 133, 14236-14242.
[21] Li, D.; Liao, L.; Zhou, H.; Zhao, Y.; Cai, F.; Zeng, J.; Liu, F.; Wu, H.; Tang, D.; Yu, F. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction. Mater. Today Phys. 2021, 16, 100314.
[22] Yin, Z.; He, R.; Zhang, Y.; Feng, L.; Wu, X.; Wågberg, T.; Hu, G. Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction. J. Energy Chem. 2022, 69, 585-592.
[23] Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 2017, 29, 1605838.
[24] Lao, M.; Li, P.; Jiang, Y.; Pan, H.; Dou, S. X.; Sun, W. From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy. 2022, 98, 107231.
[25] Qian, C.; Shao, W.; Zhang, X.; Mu, X.; Gu, X.; Yu, M.; Ma, L.; Liu, S.; Mu, S. Competitive coordination‐pairing between Ru clusters and single‐atoms for efficient hydrogen evolution reaction in alkaline seawater. Small. 2022, 18, 2204155.
[26] Xu, J.; Zhong, M.; Song, N.; Wang, C.; Lu, X. General synthesis of Pt and Ni co-doped porous carbon nanofibers to boost HER performance in both acidic and alkaline solutions. Chin. Chem. Lett. 2023, 34, 107359.
[27] Chen, C. H.; Wu, D.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium‐based single‐atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.
[28] Li, W.; Zhao, Y.; Liu, Y.; Sun, M.; Waterhouse, G. I.; Huang, B.; Zhang, K.; Zhang, T.; Lu, S. Exploiting Ru‐induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem. 2021, 133, 3327-3335.
[29] Wu, Q.; Luo, M.; Han, J.; Peng, W.; Zhao, Y.; Chen, D.; Peng, M.; Liu, J.; De Groot, F. M.; Tan, Y. Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 2019, 5, 192-199.
[30] Shen, L.W.; Wang, Y.; Chen, J. B.; Tian, G.; Xiong, K. Y.; Janiak, C.; Cahen, D.; Yang, X. Y. A RuCoBO nanocomposite for highly efficient and stable electrocatalytic seawater splitting. Nano Lett. 2023, 23, 1052-1060.
[31] Chen, H.; Zhang, B.; Liang, X.; Zou, X. Light alloying element-regulated noble metal catalysts for energy-related applications. Chin. J. Catal. 2022, 43, 611-635.
[32] Ai, X.; Zou, X.; Chen, H.; Su, Y.; Feng, X.; Li, Q.; Liu, Y.; Zhang, Y.; Zou, X. Transition‐metal–boron intermetallics with strong interatomic d–sp orbital hybridization for high‐performance electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 3961-3965.
[33] Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587-7590.
[34] Ding, Y.; Miao, B. Q.; Jiang, Y. C.; Yao, H. C.; Li, X. F.; Chen, Y. Polyethylenimine-modified nickel phosphide nanosheets: interfacial protons boost the hydrogen evolution reaction. J. Mater. Chem. A. 2019, 7, 13770-13776.
[35] Luo, F.; Zhang, Q.; Yu, X.; Xiao, S.; Ling, Y.; Hu, H.; Guo, L.; Yang, Z.; Huang, L.; Cai, W. Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting. Angew. Chem., Int. Ed. 2018, 57, 14862-14867.
[36] Yoon, D.; Seo, B.; Lee, J.; Nam, K. S.; Kim, B.; Park, S.; Baik, H.; Joo, S. H.; Lee, K. Facet-controlled hollow Rh2S3 hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy Environ. Sci. 2016, 9, 850-856.
[37] Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall‐water‐splitting activity. Angew. Chem. 2016, 128, 6814-6819.
[38] Xu, Y.; Chai, X.; Ren, T.; Yu, H.; Yin, S.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Synergism of Interface and Electronic Effects: Bifunctional N‐Doped Ni3S2/N‐Doped MoS2 Hetero‐Nanowires for Efficient Electrocatalytic Overall Water Splitting. CHEM-EUR J. 2019, 25, 16074-16080.
[39] Yao, N.; Li, P.; Zhou, Z.; Zhao, Y.; Cheng, G.; Chen, S.; Luo, W. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis. Adv. Energy Mater. 2019, 9, 1902449.
[40] Chen, L.; Zhang, L. R.; Yao, L. Y.; Fang, Y. H.; He, L.; Wei, G. F.; Liu, Z. P. Metal boride better than Pt: HCP Pd2B as a superactive hydrogen evolution reaction catalyst. Energy Environ. Sci. 2019, 12, 3099-3105.
[41] Sun, H.; Xu, X.; Yan, Z.; Chen, X.; Jiao, L.; Cheng, F.; Chen, J. Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A. 2018, 6, 22062-22069.
[42] Deng, K.; Ren, T.; Xu, Y.; Liu, S.; Dai, Z.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Transition metal M (M= Co, Ni, and Fe) and boron co-modulation in Rh-based aerogels for highly efficient and pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A. 2020, 8, 5595-5600.
[43] Wang, P.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S.; Lu, G.; Yao, J.; Huang, X. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 2017, 8, 14580.
[44] Xu, J.; Liu, T.; Li, J.; Li, B.; Liu, Y.; Zhang, B.; Xiong, D.; Amorim, I.; Li, W.; Liu, L. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy Environ. Sci. 2018, 11, 1819-1827.
[45] Feng, J. X.; Wu, J.-Q.; Tong, Y.-X.; Li, G.-R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610-617.
[46] Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self‐supported transition‐metal‐based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
[47] Dhavale, V. M.; Kurungot, S. Cu–Pt nanocage with 3-D electrocatalytic surface as an efficient oxygen reduction electrocatalyst for a primary Zn–air battery. ACS Catal. 2015, 5, 1445-1452.
[48] Yu, Y.; Lee, S. J.; Theerthagiri, J.; Lee, Y.; Choi, M. Y. Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: Comparative analysis of hydrazine splitting and water splitting for energy-saving H2 generation. Appl. Catal., B. 2022, 316, 121603.
[49] Ge, S.; Zhang, L.; Hou, J.; Liu, S.; Qin, Y.; Liu, Q.; Cai, X.; Sun, Z.; Yang, M.; Luo, J. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487-9494.
[50] Gao, R.; Wang, J.; Huang, Z. F.; Zhang, R.; Wang, W.; Pan, L.; Zhang, J.; Zhu, W.; Zhang, X.; Shi, C. Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy. 2021, 6, 614-623.
[51] Zhao, W.; Luo, C.; Lin, Y.; Wang, G. B.; Chen, H. M.; Kuang, P.; Yu, J. Pt–Ru dimer electrocatalyst with electron redistribution for hydrogen evolution reaction. ACS Catal. 2022, 12, 5540-5548.
[52] Cao, D.; Wang, J.; Xu, H.; Cheng, D. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small. 2020, 16, 2000924.
[53] Wang, H.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Multifunctional electrocatalysts: Ru–M (M= Co, Ni, Fe) for alkaline fuel cells and electrolyzers. ACS Catal. 2020, 10, 4608-4616.
[54] Xu, H.; Shang, H.; Wang, C.; Jin, L.; Chen, C.; Du, Y. Nanoscale engineering of porous Fe-doped Pd nanosheet assemblies for efficient methanol and ethanol electrocatalyses. Nanoscale. 2020, 12, 2126-2132.
[55] Zhu, T.; Huang, J.; Huang, B.; Zhang, N.; Liu, S.; Yao, Q.; Haw, S. C.; Chang, Y. C.; Pao, C. W.; Chen, J. M. High‐index faceted RuCo nanoscrews for water electrosplitting. Adv. Energy Mater. 2020, 10, 2002860.
[56] Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L. A general route to prepare low‐ruthenium‐content bimetallic electrocatalysts for pH‐universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem., Int. Ed. 2020, 59, 1718-1726.
[57] Hou, L.; Jang, H.; Gu, X.; Cui, X.; Tang, J.; Cho, J.; Liu, X. Design strategies of ruthenium‐based materials toward alkaline hydrogen evolution reaction. EcoEnergy. 2023, 1, 16-44.
[58] Huynh, T. T.; Mai, V. T. T.; Nguyen, A. Q. K.; Pham, H. Q. Ni‐Doped RuPt Nanoalloy on Acid‐Treated Carbon for pH‐Universal Hydrogen Evolution Reaction. Adv. Sustainable Syst. 2024, 8, 2300380.
[59] Jin, H.; Wang, X.; Tang, C.; Vasileff, A.; Li, L.; Slattery, A.; Qiao, S. Z. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv. Mater. 2021, 33, 2007508.
[60] Chen, J.; Ying, J.; Xiao, Y.; Dong, Y.; Ozoemena, K. I.; Lenaerts, S.; Yang, X. Stoichiometry design in hierarchical CoNiFe phosphide for highly efficient water oxidation. Sci. China Mater. 2022, 65, 2685-2693.
[61] Dresp, S. r.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Lett. 2019, 4, 933-942.
[62] Yu, L.; Wu, L.; McElhenny, B.; Song, S.; Luo, D.; Zhang, F.; Yu, Y.; Chen, S.; Ren, Z. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439-3446.
[63] Li, J.; Hou, C.; Chen, C.; Ma, W.; Li, Q.; Hu, L.; Lv, X.; Dang, J. Collaborative interface optimization strategy guided ultrafine RuCo and MXene heterostructure electrocatalysts for efficient overall water splitting. ACS Nano. 2023, 17, 10947-10957.
[64] Cheng, X.; Xiao, B.; Chen, Y.; Wang, Y.; Zheng, L.; Lu, Y.; Li, H.; Chen, G. Ligand charge donation–acquisition balance: a unique strategy to boost single pt atom catalyst mass activity toward the hydrogen evolution reaction. ACS Catal. 2022, 12, 5970-5978.
[65] Wang, B.; Lu, M.; Chen, D.; Zhang, Q.; Wang, W.; Kang, Y.; Fang, Z.; Pang, G.; Feng, S. NixFeyN@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. J. Mater. Chem. A. 2021, 9, 13562-13569.
[66] Sun, J. A.; Kots, P. A.; Hinton, Z. R.; Marinkovic, N. S.; Ma, L.; Ehrlich, S. N.; Zheng, W.; Epps III, T. H.; Korley, L. T.; Vlachos, D. G. Size and Structure Effects of Carbon-Supported Ruthenium Nanoparticles on Waste Polypropylene Hydrogenolysis Activity, Selectivity, and Product Microstructure. ACS Catal. 2024, 14, 3228-3240.
[67] Liang, J.; Gao, X.; Xu, K.; Lu, J.; Liu, D.; Zhao, Z.; Tse, E. C.; Peng, Z.; Zhang, W.; Liu, J. Unraveling the Asymmetric O─O Radical Coupling Mechanism on Ru─ O─ Co for Enhanced Acidic Water Oxidation. Small. 2023, 19, 2304889.
[68] Cai, L.; Bai, H.; Kao, C. w.; Jiang, K.; Pan, H.; Lu, Y. R.; Tan, Y. Platinum–Ruthenium Dual‐Atomic Sites Dispersed in Nanoporous Ni0. 85Se Enabling Ampere‐Level Current Density Hydrogen Production. Small. 2024, 2311178.
[69] Chen, Z.; Zhang, P. Electronic structure of single-atom alloys and its impact on the catalytic activities. ACS Omega. 2022, 7, 1585-1594.
[70] Li, Y.; Liu, X.; Xue, S.; Liu, A.; Wen, S.; Chen, S. Boosting the electrocatalytic performance of CoPt alloy with enhanced electron transfer via atomically dispersed cobalt sites. Small. 2023, 19, 2302170.
[71] Nguyen, N. A.; Ali, Y.; Nguyen, V. T.; Omelianovych, O.; Larina, L. L.; Choi, H. S. NiCoPt/graphene-dot nanosponge as a highly stable electrocatalyst for efficient hydrogen evolution reaction in acidic electrolyte. J. Alloys Compd. 2020, 849, 156651.
[72] Wang, C.; Qi, L. Hollow nanosheet arrays assembled by ultrafine ruthenium–cobalt phosphide nanocrystals for exceptional pH-universal hydrogen evolution. ACS Mater. Lett. 2021, 3, 1695-1701.
[73] Li, C.; Zhang, L.; Zhang, Y.; Zhou, Y.; Sun, J.; Ouyang, X.; Wang, X.; Zhu, J.; Fu, Y. PtRu alloy nanoparticles embedded on C2N nanosheets for efficient hydrogen evolution reaction in both acidic and alkaline solutions. Chem. Eng. J. 2022, 428, 131085.
[74] Kuang, Y.; Qiao, W.; Yang, F.; Feng, L. Electrochemical hydrogen evolution efficiently boosted by interfacial charge redistribution in Ru/MoSe2 embedded mesoporous hollow carbon spheres. J. Energy Chem. 2023, 85, 447-454.
[75] Yao, R.; Sun, K.; Zhang, K.; Wu, Y.; Du, Y.; Zhao, Q.; Liu, G.; Chen, C.; Sun, Y.; Li, J. Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nat. Commun. 2024, 15, 2218.
[76] Zhou, Y.; Kuang, Y.; Hu, G.; Wang, X.; Feng, L. An effective Pt–CoTe/NC catalyst of bifunctional methanol electrolysis for hydrogen generation. Mater. Today Phys. 2022, 27, 100831.
[77] Zhang, D.; Miao, H.; Wu, X.; Wang, Z.; Zhao, H.; Shi, Y.; Chen, X.; Xiao, Z.; Lai, J.; Wang, L. Scalable synthesis of ultra-small Ru2P@ Ru/CNT for efficient seawater splitting. Chin. J. Catal. 2022, 43, 1148-1155.
[78] Liu, G.; Zhang, Z.; Liu, W.; Yang, W.; An, L.; Qu, D.; Liu, Y.; Wang, X.; Sun, Z. Ultra-small carbon-supported FeRu alloy as a superior electrocatalyst for hydrogen evolution reaction. Sci. China Mater. 2023, 66, 2672-2679.
[79] Gu, X.; Yu, M.; Chen, S.; Mu, X.; Xu, Z.; Shao, W.; Zhu, J.; Chen, C.; Liu, S.; Mu, S. Coordination environment of Ru clusters with in-situ generated metastable symmetry-breaking centers for seawater electrolysis. Nano Energy. 2022, 102, 107656.
[80] Zhu, J.; Lu, R.; Shi, W.; Gong, L.; Chen, D.; Wang, P.; Chen, L.; Wu, J.; Mu, S.; Zhao, Y. Epitaxially grown Ru clusters–nickel nitride heterostructure advances water electrolysis kinetics in alkaline and seawater media. Energy Environ. Mater. 2023, 6, e12318.
[81] Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3 d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nat. Mater. 2012, 11, 550-557.
[82] Tian, M.; Shi, S.; Shen, Y.; Yin, H. PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell. Electrochim. Acta. 2019, 293, 390-398.
[83] Zhu, Y.; Klingenhof, M.; Gao, C.; Koketsu, T.; Weiser, G.; Pi, Y.; Liu, S.; Sui, L.; Hou, J.; Li, J. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping. Nat. Commun. 2024, 15, 1447.
[84] Zhang, J.; Zhang, L.; Liu, J.; Zhong, C.; Tu, Y.; Li, P.; Du, L.; Chen, S.; Cui, Z. OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction. Nat. Commun. 2022, 13, 5497. |