參考文獻 |
[1] Chu, S., Cui, Y., Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16-22.
[2] Prabhu, P., & Lee, J. M. Metallenes as functional materials in electrocatalysis. Chem. Soc. Rev. 2021, 50, 6700-6719.
[3] Yan, Z., Hitt, J. L., Turner, J. A., & Mallouk, T. E. Renewable electricity storage using electrolysis. Proc. Natl. Acad. Sci. 2020, 117, 12558-12563.
[4] Park, S., Liu, L., Demirkır, Ç., van der Heijden, O., Lohse, D., Krug, D., Koper, M. T. Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution. Nat. Chem. 2023, 15, 1532-1540.
[5] Wu, H., Feng, C., Zhang, L., Zhang, J., Wilkinson, D. P. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energy Rev. 2021, 4, 473-507.
[6] Chen, H., Zhang, B., Liang, X., Zou, X. Light alloying element-regulated noble metal catalysts for energy-related applications. Chin. J. Catal. 2022, 43, 611-635.
[7] Wang, H., Chen, Z. N., Wu, D., Cao, M., Sun, F., Zhang, H., Cao, R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core–shell alloy structure. J. Am. Chem. Soc. 2021, 143, 4639-4645.
[8] Zhai, P., Xia, M., Wu, Y., Zhang, G., Gao, J., Zhang, B., Hou, J. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.
[9] Wang, Z., Xiao, B., Lin, Z., Xu, Y., Lin, Y., Meng, F., Zhong, W. PtSe2/Pt heterointerface with reduced coordination for boosted hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 23388-23393.
[10] Wang, Y., Hu, Z., Chen, W., Wu, S., Li, G., Chou, S. Non‐noble metal‐based catalysts applied to hydrogen evolution from hydrolysis of boron hydrides. Small Struct. 2021, 2, 2000135.
[11] Ding, Y., Cao, K. W., He, J. W., Li, F. M., Huang, H., Chen, P., Chen, Y. Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction. Chin. J. Catal. 2022, 43, 1535-1543.
[12] Zhang, C., Liu, W., Chen, C., Ni, P., Wang, B., Jiang, Y., Lu, Y. Emerging interstitial/substitutional modification of Pd-based nanomaterials with nonmetallic elements for electrocatalytic applications. Nanoscale 2022, 14, 2915-2942.
[13] Wei, J., Zhou, M., Long, A., Xue, Y., Liao, H., Wei, C., Xu, Z. J. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions. Nano-Micro Lett. 2018, 10, 1-15.
[14] Chen, Z., Yang, H., Kang, Z., Driess, M., Menezes, P. W. The Pivotal Role of s‐, p‐, and f‐Block Metals in Water Electrolysis: Status Quo and Perspectives. Adv. Mater. 2022, 34, 2108432.
[15] Song, H. J., Yoon, H., Ju, B., Kim, D. W. Highly efficient perovskite‐based electrocatalysts for water oxidation in acidic environments: a mini review. Adv. Energy Mater. 2021, 11, 2002428.
[16] Tang, T., Ding, L., Yao, Z. C., Pan, H. R., Hu, J. S., Wan, L. J. Synergistic electrocatalysts for alkaline hydrogen oxidation and evolution reactions. Adv. Funct. Mater. 2022, 32, 2107479.
[17] Li, X., Shen, P., Luo, Y., Li, Y., Guo, Y., Zhang, H., Chu, K. PdFe Single‐Atom Alloy Metallene for N2 Electroreduction. Angew. Chem., Int. Ed. 2022, 134, e202205923.
[18] Yin, Z., He, R., Zhang, Y., Feng, L., Wu, X., Wågberg, T., Hu, G. Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction. J. Energy Chem. 2022, 69, 585-592.
[19] Li, H., Zeng, R., Feng, X., Wang, H., Xu, W., Lu, X., Abruña, H. D. Oxidative stability matters: A case study of palladium hydride nanosheets for alkaline fuel cells. J. Am. Chem. Soc. 2022, 144, 8106-8114.
[20] Shi, Y., Schimmenti, R., Zhu, S., Venkatraman, K., Chen, R., Chi, M., Xia, Y. Solution-phase synthesis of PdH0.706 nanocubes with enhanced stability and activity toward formic acid oxidation. J. Am. Chem. Soc. 2022, 144, 2556-2568.
[21] Guo, R., Zhang, K., Ji, S., Zheng, Y., Jin, M. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. Chin.Chem. Lett. 2021, 32, 2679-2692.
[22] Wang, X., Zhu, Y., Li, H., Lee, J. M., Tang, Y., Fu, G. Rare‐earth single‐atom catalysts: a new frontier in photo/electrocatalysis. Small Methods 2022, 6, 2200413.
[23] Sun, H. Y., Ding, Y., Yue, Y. Q., Xue, Q., Li, F. M., Jiang, J. X., Chen, Y. Bifunctional palladium hydride nanodendrite electrocatalysts for hydrogen evolution integrated with formate oxidation. ACS Appl. Mater. Interfaces 2021, 13, 13149-13157.
[24] Wang, D., Jiang, X., Lin, Z., Zeng, X., Zhu, Y., Wang, Y., Fu, G. Ethanol‐induced hydrogen insertion in ultrafine IrPdH boosts pH‐universal hydrogen evolution. Small 2022, 18, 2204063.
[25] Lao, M., Rui, K., Zhao, G., Cui, P., Zheng, X., Dou, S. X., Sun, W. Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem., Int. Ed. 2019, 131, 5486-5491.
[26] Chen, Y. J., Chen, Y. R., Chiang, C. H., Tung, K. L., Yeh, T. K., Tuan, H. Y. Monodisperse ordered indium–palladium nanoparticles: synthesis and role of indium for boosting superior electrocatalytic activity for ethanol oxidation reaction. Nanoscale 2019, 11, 3336-3343.
[27] Fan, J., Feng, Z., Mu, Y., Ge, X., Wang, D., Zhang, L., Cui, X. Spatially confined PdHX metallenes by tensile strained atomic Ru layers for efficient hydrogen evolution. J. Am. Chem. Soc. 2023, 145, 5710-5717.
[28] Li, L., Xu, H., Zhu, Q., Meng, X., Xu, J., Han, M. Recent advances of H-intercalated Pd-based nanocatalysts for electrocatalytic reactions. Dalton Trans. 2023, 52, 13452-13466.
[29] Zhang, H., Jiang, Q., Hadden, J. H., Xie, F., Riley, D. J. Pd ion‐exchange and ammonia etching of a prussian blue analogue to produce a high‐performance water‐splitting catalyst. Adv. Funct. Mater. 2021, 31, 2008989.
[30] Wang, Q., Liu, J., Li, T., Zhang, T., Arbiol, J., Yan, S., Cabot, A. Pd2Ga nanorods as highly active bifunctional catalysts for electrosynthesis of acetic acid coupled with hydrogen production. Chem. Eng. J. 2022, 446, 136878.
[31] Xu, B., Zhang, Y., Li, L., Shao, Q., Huang, X. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord. Chem. Rev. 2022, 459, 214388.
[32] Zheng, Y., Jiao, Y., Jaroniec, M., Qiao, S. Z. Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 2015, 54, 52-65.
[33] Lv, F., Huang, B., Feng, J., Zhang, W., Wang, K., Li, N., Guo, S. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. Natl. Sci. Rev. 2021, 8, nwab019.
[34] Zhang, J., Lv, F., Li, Z., Jiang, G., Tan, M., Yuan, M., Guo, S. Cr‐doped Pd metallene endows a practical formaldehyde sensor new limit and high selectivity. Adv. Mater. 2022, 34, 2105276.
[35] Guo, J., Gao, L., Tan, X., Yuan, Y., Kim, J., Wang, Y., Huang, H. Template‐directed rapid synthesis of Pd‐based ultrathin porous intermetallic nanosheets for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 133, 11037-11044.
[36] Shi, J., Kao, C. W., Lan, J., Jiang, K., Peng, M., Luo, M., Tan, Y. Nanoporous PdIr alloy for high-efficiency and durable water splitting in acidic media. J. Mater. Chem. A 2023, 11, 11526-11533.
[37] Wang, B., Lu, M., Chen, D., Zhang, Q., Wang, W., Kang, Y., Feng, S. NixFey N@C microsheet arrays on Ni foam as an efficient and durable electrocatalyst for electrolytic splitting of alkaline seawater. J. Mater. Chem. A 2021, 9, 13562-13569.
[38] Cai, C., Wang, M., Han, S., Wang, Q., Zhang, Q., Zhu, Y., Gu, M. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2020, 11, 123-130.
[39] Jia, Y., Huang, T. H., Lin, S., Guo, L., Yu, Y. M., Wang, J. H., Dai, S. Stable Pd–Cu hydride catalyst for efficient hydrogen evolution. Nano Lett. 2022, 22, 1391-1397.
[40] Liu, S., Zhang, H., Yu, H., Deng, K., Wang, Z., Xu, Y., Wang, H. Defect‐Rich PdIr Bimetallene Nanoribbons with Interatomic Charge Localization for Isopropanol‐Assisted Seawater Splitting. Small 2023, 19, 2300388.
[41] Deng, Z., Mostaghimi, A. H. B., Gong, M., Chen, N., Siahrostami, S., Wang, X. Pd 4d Orbital Overlapping Modulation on Au@Pd Nanowires for Efficient H2O2 Production. J. Am. Chem. Soc. 2024, 146, 2816-2823.
[42] Du, R., Jin, W., Hübner, R., Zhou, L., Hu, Y., Eychmüller, A. Engineering multimetallic aerogels for pH‐universal HER and ORR electrocatalysis. Adv. Energy Mater. 2020, 10, 1903857.
[43] Wang, C., Xu, H., Shang, H., Jin, L., Chen, C., Wang, Y., Du, Y. Ir-doped Pd nanosheet assemblies as bifunctional electrocatalysts for advanced hydrogen evolution reaction and liquid fuel electrocatalysis. Inorg. Chem. 2020, 59, 3321-3329.
[44] Kaushik, P., Kaur, G., Chaudhary, G. R., Batra, U. Cleaner way for overall water splitting reaction by using palladium and cobalt based nanocomposites prepared from mixed metallosurfactants. Appl. Surf. Sci. 2021, 556, 149769.
[45] Huang, J., Du, C., Dai, Q., Zhang, X., Tang, J., Wang, B., Chen, J. Facile and rapid synthesis of ultrafine RuPd alloy anchored in N-doped porous carbon for superior HER electrocatalysis in both alkaline and acidic media. J. Alloys Compd. 2022, 917, 165447.
[46] Yang, X., Wu, Z., Xing, Z., Yang, C., Wang, W., Yan, R., Zhao, C. IrPd Nanoalloy‐Structured Bifunctional Electrocatalyst for Efficient and pH‐Universal Water Splitting. Small 2023, 19, 2208261.
[47] Fan, J., Wu, J., Cui, X., Gu, L., Zhang, Q., Meng, F., Zheng, W. Hydrogen stabilized RhPdH 2D bimetallene nanosheets for efficient alkaline hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 3645-3651.
[48] Li, F., Han, G. F., Noh, H. J., Jeon, J. P., Ahmad, I., Chen, S., Baek, J. B. Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nat. Commun. 2019, 10, 4060.
[49] Cherevko, S., Geiger, S., Kasian, O., Kulyk, N., Grote, J. P., Savan, A., Mayrhofer, K. J. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170-180.
[50] Islam, M., Nguyen, T. H., Tran, D. T., Dinh, V. A., Kim, N. H., Lee, J. H. Bimetallic atom dual-doped MoS2-based heterostructures as a high-efficiency catalyst to boost solar-assisted alkaline seawater electrolysis. ACS Sustainable Chem. Eng. 2023, 11, 6688-6697.
[51] Sun, P., Zheng, X., Chen, A., Zheng, G., Wu, Y., Long, M., Chen, Y. Constructing Amorphous‐Crystalline Interfacial Bifunctional Site Island‐Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution. Adv. Sci. 2024, 2309927.
[52] Fan, J., Cui, X., Yu, S., Gu, L., Zhang, Q., Meng, F., Zheng, W. Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles. ACS Nano 2019, 13, 12987-12995.
[53] Wang, Z., Mao, Y., Zhang, H., Deng, K., Yu, H., Wang, X., Wang, L. Hydrogen-intercalation-induced lattice expansion of mesoporous PtPd nanocrystals for enhanced hydrogen evolution. Sustain. Energy Fuels 2023, 7, 636-640.
[54] Tung, C. W., Huang, Y. P., Hsu, C. S., Chen, T. L., Chang, C. J., Chen, H. M., Chen, H. C. Tracking the in situ generation of hetero-metal–metal bonds in phosphide electrocatalysts for electrocatalytic hydrogen evolution. Catal. Sci. Technol. 2022, 12, 3234-3239.
[55] Zuo, Y., Bellani, S., Saleh, G., Ferri, M., Shinde, D. V., Zappia, M. I., Manna, L. Ru–Cu Nanoheterostructures for Efficient Hydrogen Evolution Reaction in Alkaline Water Electrolyzers. J. Am. Chem. Soc. 2023, 145, 21419-21431. |