博碩士論文 111226032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:3.133.134.153
姓名 倪咸文(HSIEN-WEN,NI)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氮化硼應用於紫外光發光二極體的特性分析與研製
(Analysis and fabrication of the ultraviolet LEDs with boron nitride)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 紫外光LED的短波長具備高能量,可淨化水和空氣,在醫療衛生的應用上極具價值。然而紫外光LED的發光效率低,尚未普及在市場上。造成發光效率低的其中一個原因為極性量子井,當量子井受到極化效應時,會產生內建電場,產生量子侷限史塔克效應 (Quantum Confined Stark Effect,QCSE),使得電子和電洞分離,降低發光效率。為了解決這問題,我們以立方氮化硼(cubic boron nitride,c-BN)做為紫外光LED的磊晶材料,希望減輕量子井的QCSE,以提升紫外光LED的發光效率。
本研究利用金屬有機化學氣相沉積 ( Metal-organic Chemical Vapor Deposition,MOCVD) 成長紫外光LED磊晶層,並在AlGaN量子井 (multiple quantum well,MQWs) 下方插入一層c-BN,藉此評估這種磊晶結構的發光效率。完成元件製程後,我們利用電致發光光譜 (Electroluminescence spectra,EL spectra) 以及電壓-電流特性曲線分析元件特性。EL的量測結果含c-BN的LED無法發光。根據一維 drift-diffusion charge control solver (1D DDCC) 模擬的能帶圖,c-BN的能隙太大,阻擋來自n型AlGaN的電子流。為了改善電流注入量子井的效率,我們將c-BN移至n型AlGaN下方,並透過能帶圖確認MQWs/n-AlGaN/c-BN可以提升電子注入量子井的效率,也有機會減緩MQWs裡的QCSE。
摘要(英) Because of its short wavelength, ultraviolet(UV) LEDs have been applied in various fields including water and air purification, medical hygiene, and more. However, the low luminous efficiency of UV LEDs has hindered their penetration into the market. One of the reasons for the low luminous efficiency is the polarization of AlGaN quantum wells. When the quantum wells are subjected to polarization effects, the induced Quantum Confined Stark Effect (QCSE) creates an internal electric field, leading to the separation of electrons and holes, thus reducing the radiative recombination efficiency. To reduce the QCSE, we adopt cubic boron nitride (c-BN) in the growth of UV LEDs.
The UV LED, with c-BN inserted under the AlGaN multiple quantum wells (MQWs), was grown by metal-organic chemical vapor deposition (MOCVD) on two-inch sapphire substrates. Characterization of electroluminescence (EL) spectra and current-voltage curves showed that the UV LED with c-BN did not emit light. According to the band diagram simulated by the one-dimensional drift-diffusion charge control solver (1D DDCC), election injection from the n-type AlGaN was blocked by the large bandgap (~6.2eV) of c-BN. In order to increase the injection efficiency, the c-BN layer was moved from MQWs/c-BN/n-AlGaN to MQWs/n-AlGaN/c-BN. In the simulated band diagram of MWQs/n-AlGaN/c-BN, the electron-blocking band offset at c-BN/n-AlGaN is removed, and the band tilting of MQW is also likely to be mitigated.
關鍵字(中) ★ 紫外光發光二極體 關鍵字(英) ★ the ultraviolet LEDs
論文目次 摘要
致謝
一、 緒論 1
1-1 紫外光LED的應用 1
1-2 紫外光LED的瓶頸 3
1-3 非極性量子井的技術 4
1-4 非極性量子井優缺點 6
1-5 研究動機 7
二、 實驗原理與步驟 8
2-1實驗結構 8
2-2儀器介紹 10
2-2-1 MOCVD(金屬有機化學氣相沉積) 10
2-2-2 Karlsuss Mask Aligner(MA6曝光機) 10
2-2-3 Inductively Coupled Plasma(感應耦合蝕刻機) 11
2-2-4 E-gun/Thermal Evaporator(電子束/熱阻式蒸鍍機) 12
2-2-5 Furnace(爐管) 13
2-2-6 模擬軟體( DDCC_1D ) 14
2-3 製程步驟 16
2-3-1 樣品清洗 16
2-3-2 旋塗光阻/定義蝕刻區域 16
2-3-3 蝕刻至n-type結構 17
2-3-4 定義p-type電極區域 17
2-3-5 蒸鍍p-type電極 17
2-3-6 爐管退火 18
2-3-7 定義n-type電極區域 18
2-3-8 蒸鍍n-type電極 19
三、 結果與討論 20
3-1 PL光譜 20
3-2量子井在AlN與BN能帶圖 22
3-3 EL光譜 24
3-4 I-V特性曲線 26
3-5 MQW/BN/n-AlGaN能帶圖 28
3-6 MQW/n-AlGaN/AlN能帶圖 30
3-7 MQW/n-AlGaN/BN能帶圖 32
四、結論與未來展望 34
4-1 結論 34
4-2 未來展望 35
五、參考文獻 36
參考文獻 [1] Inagaki, H., Saito, A., Kaneko, C., Sugiyama, H., Okabayashi, T., & Fujimoto, S. (2021). Rapid inactivation of SARS-CoV-2 variants by continuous and intermittent irradiation with a deep-ultraviolet light-emitting diode (DUV-LED) device. Pathogens, 10(6), 754.
[2]https://www.doctoruv.com/difference-between-uva-uvb-uvc-uvv
[3] Bertagna Silva, D., Buttiglieri, G., & Babić, S. (2021). State-of-the-art and current challenges for TiO2/UV-LED photocatalytic degradation of emerging organic micropollutants. Environmental science and pollution research, 28(1), 103-120.
[4]https://genesiswatertech.com/blog-post/4-misconceptions-of-advanced-oxidation-for-wastewater-treatment/
[5] Kneissl, M. (2016). A brief review of III-nitride UV emitter technologies and their applications. III-Nitride Ultraviolet Emitters: Technology and Applications, 1-25.
[6] Usman, M., Malik, S., & Munsif, M. (2021). AlGaN‐based ultraviolet light‐emitting diodes: challenges and opportunities. Luminescence, 36(2), 294-305.
[7] Yu, E. T., Dang, X. Z., Asbeck, P. M., Lau, S. S., & Sullivan, G. J. (1999). Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 17(4), 1742-1749.
[8]https://www.made-in-china.com/showroom/edytian/product-detailyCUJFSqYXnkx/China-Sapphire-Wafer-R-Plane-M-Plane-Semi-Polar-Non-Polar-off-Cut.html
[9] Ling, S. C., Wang, T. C., Ko, T. S., Lu, T. C., Kuo, H. C., & Wang, S. C. (2008). Characteristics of ultraviolet nonpolar InGaN/GaN light-emitting diodes using trench epitaxial lateral overgrowth technology. Journal of crystal growth, 310(7-9), 2330-2333.
[10] Toropov, A. A., Shevchenko, E. A., Shubina, T. V., Jmerik, V. N., Nechaev, D. V., Yagovkina, M. A., ... & Monemar, B. (2013). Suppression of the quantum-confined Stark effect in AlxGa1− xN/AlyGa1− yN corrugated quantum wells. Journal of Applied Physics, 114(12).
[11] Roumeliotis, G. (2018). III-Nitride Emitters and Converters: Built-in polarization-induced electric fields, built-in potential, and effective doping concentration.
指導教授 賴昆佑(Lai, Kun-Yu) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明