博碩士論文 111226056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.22.42.25
姓名 張香允(Hsiang-Yun Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 鋁摻雜氧化鋅近紅外窄帶通濾光片之研究
(Research on the Aluminum-doped-zinc-oxide Near-infrared Narrow-bandpass Filters)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 近紅外光波段(Near-IR)由於其在大氣中有高穿透性,且部分特定波段在自然環境中太陽輻射背景值極低,與可見光相比可以提供更可靠的測量結果,因此在車載、LiDAR、通訊、生醫等多方面的感測器需求量日漸增加,而在元件微型化的情形下,現有成熟薄膜材料所製作的近紅外光多層膜膜層過厚不易與矽基感測器整合,因此需要開發新的高低折射率材料來完成近紅外光波段的光學應用。而本研究利用鋁摻雜氧化鋅作為低折射率材料,確認該材料特性及實際應用至1310 nm處之窄帶通濾光片。
本實驗使用HiPIMS高功率脈衝磁控濺鍍進行。第一部分為確認鋁摻雜量之影響,透過調變濺鍍靶材上的鋁摻雜濃度、氧氣通量以及快速熱退火溫度,確認AZO的吸收現象,判斷適合應用於1310 nm處的摻雜比例及後續訂製混合靶材的比例。第二部分為調整混合靶材的製程參數,並透過氧氣通量、Duty Cycle、快速熱退火等,優化薄膜結構來獲取最佳光學特性之薄膜。第三部分則為SiH高折射率材料的最優化,透過調變氫氣通量、快速熱退火取得折射率較高、吸收最低且穩定之薄膜。最後第四部分則為設計及鍍製多層膜樣品,結合上述章節的結果,以不同參數AZO薄膜,實際堆疊穿透窗於1310 nm處的窄帶通濾光片樣品,並探討其優劣變化,並同樣進行快速熱退火處理觀察其退火後變化。
摘要(英) Near-infrared (Near-IR) wavelengths are increasingly in demand for sensors across various domains, such as automotive, LiDAR, communications, and biomedical applications. This is due to their high transparent in the atmosphere and the presence of specific bands with extremely low solar background radiation, which provide reliable measurements that visible light cannot discern. However, with the miniaturization of devices, the existing thin-film materials used for fabricating multilayer near-IR filter become too thick to be integrated with Si-based sensors easily. Therefore, to develop new high and low refractive index materials to fulfill optical applications in the Near-IR wavelength range is necessary. This study has utilized aluminum-doped zinc oxide (AZO) as a low refractive index material, confirming its characteristics and practical application in narrowband pass filters at 1310 nm.
High Power Impulse Magnetron Sputtering (HiPIMS) has been applied in this experiment. The first part of this research focuses on determining the impact of aluminum doping. By adjusting the doping of aluminum on the sputtering target, oxygen flow, and rapid thermal annealing (RTA) temperature, the absorption phenomenon of AZO is confirmed. The appropriate doping ratio for application at 1310 nm is determined, followed by customizing the proportion of the mixed target. The second part involves optimizing the process parameters of the mixed target. By adjusting the oxygen flow, duty cycle, and RTA, the film structure is optimized to achieve the most suitable optical properties. The third part involves optimizing the high refractive index SiH. By adjusting the hydrogen flow and RTA, a film with higher refractive index, lower absorption, and greater stability is obtained. The final part involves designing and depositing multilayer film samples. Combining the results from the previous sections, different parameter AZO films are stacked to produce narrowband pass filter samples at 1310 nm. The performance variations are explored, and the effects of RTA are observed.
關鍵字(中) ★ 高功率脈衝磁控濺鍍
★ 鋁摻雜氧化鋅
★ 窄帶通濾光片
★ 近紅外光
關鍵字(英) ★ HiPIMS
★ AZO
★ NBPF
★ NIR
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章、緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
第二章、基礎理論 4
2-1 材料特性 4
2-1-1 鋁摻雜氧化鋅 (aluminum doped zinc oxide) 4
2-1-2 Drude Lorentz model 6
2-1-3 莫斯-伯斯坦效應 (Burstein-Moss effect) 10
2-1-4 氫化矽(SiH)薄膜 11
2-2 薄膜製程 13
2-2-1 電漿原理 13
2-2-2 物理氣相沉積原理 13
2-2-3 磁控濺鍍 14
2-2-4 高功率脈衝磁控濺鍍系統 15
2-3 多層膜堆設計原理 17
第三章、實驗架構與分析儀器 19
3-1 實驗架構與方法 19
3-1-1 實驗流程 20
3-2 製程設備 22
3-2-1 磁控濺鍍設備 22
3-2-2 HiPIMS 系統 22
3-2-3 紫外光臭氧清洗機(UV Ozone) 24
3-3 分析儀器及軟體 24
3-3-1 紫外/可見/近紅外光光譜儀((UV/VIS/NIR Spectrophotometer) 24
3-3-2 Essential Macleod 25
3-3-3 霍爾量測儀(Hall measurement) 26
3-3-4 X-Ray 繞射分析儀(XRD) 27
3-3-5 拉曼光譜儀(Raman Spectrometer) 27
3-3-6 X射線光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 29
3-3-7 傅立葉轉換紅外光譜儀器(Fourier Transform Infrared Spectroscopy, FTIR) 30
3-3-8 原子力顯微鏡(Atomic Force Microscope, AFM) 33
3-3-9 場發射式掃描電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 34
3-3-10 能量色散X射線光譜(Energy Dispersive X-ray Spectroscopy, EDS) 35
3-3-11 高解析掃描穿透式電子顯微鏡(High Resolution Scanning Transmission Electron Microscope, HR-STEM) 35
第四章、實驗結果 37
4-1 Al不同摻雜比例之光學及電學特性 37
4-1-1 調變不同鋁片數目 37
4-1-2 調變不同氧氣通量 40
4-1-3 調變RTA 快速熱退火溫度 45
4-2 AZO (ZnO : Al2O3 = 98 : 2 wt%)混合靶之光學及電學特性 49
4-2-1 調變不同氧氣通量 49
4-2-2 不同duty cycle 59
4-2-3 RTA快速熱退火之變化 66
4-3 SiH之光學特性 69
4-3-1 UV Ozone前處理之影響 69
4-3-2 不同氫氣通量對SiH之影響 70
4-3-3 RTA快速熱退火之變化 74
4-4 NBPF 77
4-4-1 HLH介面層 77
4-4-2 Duty Cycle 50% 1310 NBPF堆疊 78
4-4-3 Duty Cycle 7.14% 1310 NBPF堆疊 82
4-4-4 多層膜快速熱退火之變化 86
第五章、結論與未來展望 90
5-1 實驗結論 90
5-2 未來展望 91
參考文獻 92
參考文獻 [1] Huang PS, Hu Q, Jin F, Chiang FP. “Color-encoded digital fringe projection technique for high-speed three-dimensional surface contouring,” Opt Eng 1999;38(6):1065–71
[2] Su WH. “Color-encoded fringe projection for 3D shape measurements,” Opt Exp 2007;15(20):13167–81.
[3] Su X, Chen W, Zhang Q, Chao Y. “Dynamic 3D shape measurement method based on FTP,” Opt Lasers Eng 2001;36(1):49–64.
[4] Zhang Q, Su X. “High-speed optical measurement for the drumhead vibration,” Opt Exp 2005;13(8):3110–6.
[5] Zhang S, Yau ST. “High-resolution, real-time 3D absolute coordinate measure- ment based on a phase-shifting method,” Opt Exp 2006;14(7):2644–9.
[6] Zhang S, Van Der Weide D, Oliver J. “Superfast phase-shifting method for 3D shape measurement,” Opt Exp 2010;18(9):9684–9.
[7] DICKEY, T.; FALKOWSKI, P. Solar energy and its biological-physical interactions in the sea. The sea, 12: 401-440, 2002.
[8] "SWIR White Paper." Smart Vision Lights. https://smartvisionlights.com/swir-wavelengths-lighting/ (accessed 2023).
[9] LEARY, D. J.; BARNES, J. O.; JORDAN, A. G. Calculation of carrier concentration in polycrystalline films as a function of surface acceptor state density: application for ZnO gas sensors. J. Electrochem. Soc.;(United States), 129.6, 1982.
[10] MINAMI, Tadatsugu. Transparent conducting oxide semiconductors for transparent electrodes. Semiconductor science and technology, 20.4: S35, 2005.
[11] 姚筱茹, ”不同表面處理對於氧化鋅蕭特基二極體電特性影響之研究”,國立虎尾科技大學,碩士論文,2011,臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/rfdfbp。
[12] 彭思翔, ”高折射率TNO透明導電薄膜及其應用於高反射鏡設計之研究”,國立中央大學,碩士論文,2010,臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/nj3x84。
[13] 魏嘉瑩, “釓摻雜氧化鋅鋁透明導電薄膜特性分析”,國立中央大學,碩士論文,2009,臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/p55j53。
[14] J. R. Bellingham, W. A. Phillips, C. J. Adkins, “Intrinsic performance limits in transparent conducting oxides”, Journal of Materials Science Letters, 11, 263 (1992)
[15] ZHAO, Yanfang, et al. Effects of uniaxial stress on the electrical structure and optical properties of Al-doped n-type ZnO. Solar Energy, 140: 21-26, 2016.
[16] Zhaohui Qiao, Chitra Agashe, Dieter Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films”, Thin Solid Films, Volume 496, Issue 2, pp. 520-525, 2006
[17] A. Sarkar, S. Ghosh, S. Chaudhuri and A.K. Pal, “Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films”, Thin Solid Films, 204, 255 (1991)
[18] I. Hamberg and C. G. Granqvist, “Band-gap widening in heavily Sn-doped In2O3”, Physics Review B, 30, 3240 (1984)
[19] R. A. Street,“Hydrogenated Amorphous Silicon", Cambridge University Press (1991).
[20] S. O. Kasap,“Principles of Electronic Materials and Devices", McGraw-Hill (2005).
[21] SMETS, A. H. M.; KESSELS, W. M. M.; VAN DE SANDEN, M. C. M. Vacancies and voids in hydrogenated amorphous silicon. Applied physics letters, 82.10: 1547-1549, 2003.
[22] H. Xiao, 2003, Introduction to Semiconductor Manufacturing Technology, Prentice-Hall Inc..
[23] 李正中,薄膜光學與鍍膜技術,第九版,藝軒圖書出版社, 2020
[24] Anders, “Tutorial: Reactive high power impulse magnetron sputtering (RHiPIMS),” J. Appl. Phys., vol. 121, no. 17, p. 171101, May 2017, doi: 10.1063/1.4978350.
[25] 李志偉,反應式高功率脈衝磁控濺鍍技術的發展, 真空科技,33(2), 9-25,2020.
[26] K. Sarakinos, J. Alami, and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art,” Surface and Coatings Technology, vol. 204, no. 11, pp. 1661–1684, Feb. 2010, doi: 10.1016/j.surfcoat.2009.11.013.
[27] ANDERS, André. A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films, 518.15: 4087-4090, 2010.
[28] S. Schiller, et al., “Pulsed magnetron sputter technology,” Surf. Coat. Technol., 61, 331, (1993).
[29] M.-J. Lee, T. I. Lee, J.-H. Cho, W. Lee, and J.-M. Myoung, “Improved bias stress stability of In–Ga–Zn–O thin film transistors by UV–ozone treatments of channel/dielectric interfaces,” Materials Science in Semiconductor Processing, vol. 30, pp. 469–475, Feb. 2015, doi: 10.1016/j.mssp.2014.10.016.
[30] J. S. Park et al., “The effect of UV-assisted cleaning on the performance and stability of amorphous oxide semiconductor thin-film transistors under illumination,” Applied Physics Letters, vol. 98, no. 1, p. 012107, Jan. 2011, doi: 10.1063/1.3536479.
[31] J. R. Vig, “UV/ozone cleaning of surfaces,” J. Vac. Sci. Technol. A, vol. 3, 1985.
[32] GREEN, Robert. Hall effect measurements in materials characterization. White paper, 3111, 2011.
[33] 石邱毅, “磁控濺鍍法製作高品質多晶砷化鎵薄膜之研究”,國立中央大學,碩士論文,2017,臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/j835ek。
[34] KERESZTURY, Gábor; CHALMERS, J. M.; GRIFFITH, P. R. Raman spectroscopy: theory. Handbook of vibrational spectroscopy, 1: 71-87, 2002.
[35] "X光光電子能譜儀 (XPS)PHI Scanning XPS Microprobe|ULVAC-PHI|材料表面分析|博精儀器 Analytical and Bio Science Instruments," https://www.aandb.com.tw/xps.html.
[36] HORIBA傅立葉轉換紅外線光譜儀(FTIR)使用手冊
[37] 周明賜, “偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究”,國立中央大學,碩士論文,2009,臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/66t768。
[38] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon” , Phys. Rev. B 45 (1992) 13367-13377.
[39] LIU, Hai-Quan; YAO, Cheng-Bao. Composition engineering of AZO films for controlled photon–electron conversion and ultrafast nonlinear optical behavior. Nanoscale, 14.25: 9169-9191, 2022.
[40] SARMA, Bimal K.; RAJKUMAR, Pradhyut. Al-doped ZnO transparent conducting oxide with appealing electro-optical properties–Realization of indium free transparent conductors from sputtering targets with varying dopant concentrations. Materials Today Communications, 23: 100870, 2020.
[41] 林育鴻, “以脈衝式磁控濺鍍法製作氧化銦鎵鋅薄膜電晶體之研究”,國立中央大學,碩士論文,2023,臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/958tta。
[42] BREIVIK, T. H., et al. Nano-structural properties of ZnO films for Si based heterojunction solar cells. Thin Solid Films, 515.24: 8479-8483, 2007.
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明