博碩士論文 111329016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.14.142.56
姓名 余婷潔(Ting-Chieh Yu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 微量鉬與熱處理對Fe-4Ni-0.6C多孔合金微結構 和機械性能的影響
(Effect of trace Mo and heat treatment on the microstructures and mechanical properties of Fe-4Ni-0.6C metal foams)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文透過無壓式粉末冶金法製備多孔合金,製備了具有孔徑1.8 mm和孔隙率51%的多孔Fe-4Ni-0.6C-(0.5Mo)合金;並透過合金微結構和機械性質分析,探討添加微量鉬(0.5 wt%)及不同熱處理條件(高溫及低溫回火和深冷處理)對其性質的影響。未含鉬的多孔合金,經深冷處理後,在低溫(200 ℃)回火時,因析出較多的過渡碳化物(ε/η),使其能在回火後有效提升壓縮性質。並在高溫(500 ℃)回火時,雖壓縮性質相對較低,但與未經深冷處理的合金相比,均有較高的壓縮平台應力和能量吸收值,主要原因為球狀雪明碳鐵的細化。這些研究結果顯示,深冷處理可以有效改善多孔合金的壓縮性質,為開發高強度吸能材料提供了有益的參考。
結果顯示,經淬火深冷後含鉬的多孔合金,在低溫(200 ℃)回火時,壓縮平台應力達到了459 MPa,單位能量吸收值更達到了60 J/g,因其合金微結構保有高硬度的回火麻田散鐵。此外,在相同的熱處理條件下,相較於未含鉬的合金,含鉬的合金展現出更高的壓縮平台應力和能量吸收值,鉬的添加能有效提升合金的壓縮性能。
摘要(英) This study investigates the production of Fe-4Ni-0.6C-(0.5Mo) metal foams utilizing a pressureless powder space holder technique, resulting in materials with a 1.8 mm pore size and 51% porosity. The impact of Mo (0.5 wt%) incorporation and different heat treatment processes (such as tempering and cryogenic treatment) on the microstructural changes and mechanical characteristics of the foams was thoroughly examined. In the absence of Mo in the metal foams, cryogenic treatment followed by tempering at low temperature (200 °C) induced the formation of a higher volume fraction of transition carbides (ε/η), leading to improved compressive properties. While high-temperature tempering (500 °C) slightly decreased the compressive attributes, the carbide precipitates in the cryogenically treated foam were finer than those in the untreated foam, resulting in significantly higher compressive plateau stress and energy absorption values. The findings underscore the effectiveness of cryogenic treatment in enhancing the compressive properties of metal foams, offering valuable insights for creating high-strength, energy-absorbing materials. In addition, the Mo-inclusive metal foams, after quenching and cryogenic treatment, preserved high-hardness martensite during low-temperature tempering (200 °C), achieving an impressive compressive plateau stress of 459 MPa and energy absorption capacity of 60 J/g.
Moreover, when compared to Mo-free counterparts under the same heat treatment conditions, the Mo-containing metal foams exhibited superior compressive plateau stress and energy absorption capacity, demonstrating the advantageous impact of Mo addition in enhancing the compressive performance of the foams.
關鍵字(中) ★ 多孔合金
★ 吸收能量
★ 壓縮強度
★ Fe-Ni-C合金
★ 微量Mo
★ 深冷處理
關鍵字(英) ★ Metal foams
★ Absorbed energy
★ Compressive strength
★ Fe-Ni-C alloy
★ Trace Mo
★ Cryogenic treatment
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 前言 1
第二章 文獻回顧 3
2.1 多孔金屬簡介 3
2.2 多孔金屬的應用 4
2.3 多孔金屬的製備 5
2.3.1 熔融發泡鑄造法 6
2.3.2 粉末冶金法 7
2.4 多孔金屬之機械性質分析 10
2.4.1 壓縮速率之影響 12
2.4.2 孔隙率與孔徑之影響 13
2.5 Fe-Ni-C合金鋼簡介 15
2.6 合金元素的影響 16
2.6.1 碳的影響 16
2.6.2 鎳的影響 17
2.6.3 鉬的影響 18
第三章 實驗材料與方法 20
3.1 生胚製作 21
3.2 燒結處理 22
3.3 熱處理 22
3.4 分析儀器 24
3.4.1 光學顯微鏡(Optical Microscopy, OM) 24
3.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 24
3.4.3 電子探針顯微分析(Electron Probe Microanalyzer,EPMA) 24
3.4.4 X-ray繞射分析(X-ray Diffraction, XRD) 24
3.4.5 電子背向散射繞射(Electron Back-Scattered Diffraction, EBSD) 25
3.4.6 示差掃描量熱法(Differential Scanning Calorimetry) 26
3.5 機械性質分析 26
3.5.1 硬度試驗 26
3.5.2 壓縮試驗 26
第四章 結果與討論 28
4.1 多孔合金微結構 28
4.2 電子探針顯微分析(EPMA) 30
4.3 X光繞射分析(XRD) 31
4.4 電子背向散射繞射(EBSD) 33
4.5 差示掃描量熱法(DSC) 35
4.6 多孔合金的機械性質 38
4.6.1 硬度試驗 38
4.6.2 壓縮試驗 41
4.6.3 多孔合金壓縮性質比較 48
第五章 結論 50
參考文獻 53
參考文獻 [ASH] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wadley, and F. Delale, “Metal foams: A design guide,” pp. 6-23, (2000).
[ASTM1] ASTM E92−23, “Standard test methods for vickers hardness and knoop hardness of metallic materials,” ASTM International, (2023).
[ASTM2] ASTM E9−19, “Standard test methods of compression testing of metallic materials at room temperature,” ASTM International, (2019).
[BAK] H. I. Bakan, “A novel water leaching and sintering process for manufacturing highly porous stainless steel,” Scripta Materialia, vol. 55, pp. 203-206, (2006).
[BAL] D. K. Balch, J. G. O’Dwyer, G. R. Davis, C. M. Cady, G. T. Gray, and D. C. Dunand, “Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions,” Materials Science and Engineering: A, vol. 391, pp. 408-417, (2005).
[BAN1] J. Banhart, “Aluminium foams for lighter vehicles,” International Journal of Vehicle Design, vol. 37, pp. 114-125, (2005).
[BAN2] J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Progress in Materials Science, vol. 46, pp. 559-632, (2001).
[BEK] N. Bekoz, and E. Oktay, “High temperature mechanical properties of low alloy steel foams produced by powder metallurgy,” Materials & Design, vol. 53, pp. 482-489, (2014).
[BHA] H. K. D. H. Bhadeshia, and R. W. K. Honeycombe, “Steels : microstructure and properties,” Elsevier, Butterworth-Heinemann, pp. 195-197, (2006).
[CAC] G. Cacciamani, J. De Keyzer, R. Ferro, U. E. Klotz, J. Lacaze, and P. Wollants, “Critical evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti alloy systems,” Intermetallics, vol. 14, pp. 1312-1325, (2006).
[CAS] G. Castro, and S. R. Nutt, “Synthesis of syntactic steel foam using gravity-fed infiltration,” Materials Science and Engineering: A, vol. 553, pp. 89-95, (2012).
[CLA] K. D. Clarke, “Austenite formation and microstructural control in low-alloy steels,” Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. Van Tyne and B. Yilbas, eds., Oxford: Elsevier, pp. 345-361, (2014).
[ELE] E. Elettore, M. Latour, M. D’Aniello, R. Landolfo, and G. Rizzano, “Prototype tests on screwed steel–aluminium foam–steel sandwich panels,” Buildings, vol. 13, pp. 2836-2847, (2023).
[FU] W. Fu, and Y. Li, “Fabrication, processing, properties, and applications of closed-cell aluminum foams: A review,” Materials (Basel), vol. 17, pp. 560-586, (2024).
[GEN] M. J. Van Genderen, M. Isac, A. Böttger, and E. J. Mittemeijer, “Aging and tempering behavior of iron-nickel-carbon and iron-carbon martensite,” Metallurgical and Materials Transactions A, vol. 28, pp. 545-561, (1997).
[GIB1] L. J. Gibson and M. F. Ashby, “Introduction,” Cellular Solids: Structure and Properties, Cambridge solid state science series, eds., Cambridge: Cambridge university press, pp. 1-14, (1997).
[GIB2] L. J. Gibson, M. F. Ashby, J. Zhang, and T. C. Triantafillou, “Failure surfaces for cellular materials under multiaxial loads—I.Modelling,” International Journal of Mechanical Sciences, vol. 31, pp. 635-663, (1989).
[GOO] R. Goodall, and A. Mortensen, “Porous metals,” Physical Metallurgy (Fifth Edition), D. E. Laughlin and K. Hono, eds., Oxford: Elsevier, pp. 2399-2595, (2014).
[HAS] A. S. M. A. Haseeb, M. Arita, and Y. Hayashi, “Thermal decomposition study of electrodeposited Fe-C and Fe-Ni-C alloys by differential scanning calorimetry,” Journal of Materials Science, vol. 36, pp. 4739-4743, (2001).
[HSU] C.-M. Hsu, Y.-C. Tzeng, S.-F. Chen, Y.-L. Chen, and H.-L. Lee, “Fabrication of 17‐4PH stainless steel foam by a pressureless powder space holder technique,” Advanced Engineering Materials, vol. 23, 2001202, (2021).
[HU] G. Hu, G. Xu, Q. Gao, Z. Feng, P. Huang, and G. Zu, “Compressive properties and energy absorption behavior of 316L steel foam prepared by space holder technique,” Materials, vol. 16, pp. 1419-1431, (2023).
[HUA] R. Huang, S. Ma, M. Zhang, J. Xu, and Z. Wang, “Dynamic deformation and failure process of quasi-closed-cell aluminum foam manufactured by direct foaming technique,” Materials Science and Engineering: A, vol. 756, pp. 302-311, (2019).
[LEF] L.-P. Lefebvre, J. Banhart, and D. Dunand, “Porous metals and metallic foams: current status and recent developments,” Advanced Engineering Materials, vol. 10, pp. 775-787, (2008).
[LI] Q. M. Li, I. Magkiriadis, and J. J. Harrigan, “Compressive strain at the onset of densification of cellular solids,” Journal of Cellular Plastics, vol. 42, pp. 371-392, (2006).
[LIU] K. Liu, S.-B. Kang, and S. Gao, “Experimental and analytical study on impact response of stainless steel-aluminium foam-alloy steel sandwich panels,” International Journal of Impact Engineering, vol. 179, 104661, (2023).
[LUO] Z.-B. Luo, H.-J. Dong, Z.-Y. Ma, L.-J. Zou, X.-L. Zhu, and L. Lin, “Orientation relationship between ferrite and austenite and its influence on ultrasonic attenuation in cast austenitic stainless steel,” Acta Physica Sinica, vol. 67, 238102, (2018).
[MAA] M. Maalekian, “The effects of alloying elements on steels (I),” pp. 1-29, (2007).
[MAD] M. Madgule, C. G. Sreenivasa, and A. V. Borgaonkar, “Aluminium metal foam production methods, properties and applications - a review,” Materials Today: Proceedings, vol. 77, pp. 673-679, (2023).
[MAR] J. Marx, M. Portanova, and A. Rabiei, “Performance of composite metal foam armors against various threat sizes,” Journal of Composites Science, vol. 4, pp. 176-193, (2020).
[MAT] R. Matsumoto, S. Kunisawa, and H. Utsunomiya, “Pore form and size dependence on plastic joining characteristics of resin/metallic foam by friction stir incremental forming,” The International Journal of Advanced Manufacturing Technology, vol. 132, pp. 717-726, (2024).
[MIY1] T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, “Alporas aluminum foam: Production process, properties, and applications,” Advanced Engineering Materials, vol. 2, pp. 179-183, (2000).
[MIY2] T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, “Aluminum foam, alporas: The production process, properties and applications,” MRS Online Proceedings Library, vol. 521, pp. 133-137, (1998).
[MOR] P. V. Morra, A. J. Böttger, and E. J. Mittemeijer, “Decomposition of Iron-based Martensite. A kinetic analysis by means of differential scanning calorimetry and dilatometry,” Journal of Thermal Analysis and Calorimetry, vol. 64, pp. 905-914, (2001).
[MUS] N. V. Mushnikov, A. G. Popov, V. S. Gaviko, A. V. Protasov, N. M. Kleinerman, O. A. Golovnya, and S. P. Naumov, “Peculiarities of phase diagram of Fe-Ni system at Ni concentrations 0 – 20 at.%,” Acta Materialia, vol. 240, 118330, (2022).
[NAW] A. Nawaz, and S. Rani, “Fabrication methods and property analysis of metal foams – a technical overview,” Materials Science and Technology, vol. 39, pp. 1877-1902, (2023).
[NEV] B. P. Neville, and A. Rabiei, “Composite metal foams processed through powder metallurgy,” Materials & Design, vol. 29, pp. 388-396, (2008).
[PAR] C. Park, and S. R. Nutt, “PM synthesis and properties of steel foams,” Materials Science and Engineering: A, vol. 288, pp. 111-118, (2000).
[PRE] M. Preciado, and M. Pellizzari, “Influence of deep cryogenic treatment on the thermal decomposition of Fe–C martensite,” Journal of Materials Science, vol. 49, pp. 8183-8191, (2014).
[QI] C. Qi, C. Yu, S. Yang, M.-X. Yang, and L.-P. Cui, “Processing, characterization and mechanical properties of welded steel hollow sphere-reinforced aluminum matrix composites,” Journal of Materials Science, vol. 58, pp. 5865-5883, (2023).
[RAB] A. Rabiei, and M. Garcia-Avila, “Effect of various parameters on properties of composite steel foams under variety of loading rates,” Materials Science and Engineering: A, vol. 564, pp. 539-547, (2013).
[SIN] S. Singh, and N. Bhatnagar, “A survey of fabrication and application of metallic foams (1925–2017),” Journal of Porous Materials, vol. 25, pp. 537-554, (2018).
[SUM] A. Suman, A. Fortini, O. Vezzani, and M. Merlin, “Microstructural investigation and impact strength of sinter-hardened PM steels: Influence of Ni content and tempering temperature,” Metals, vol. 13, pp. 1940-1955, (2023).
[SZL] A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, and I. Orbulov, “Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres,” in Materials & Design, pp. 230-237, (2015).
[TAN] E. Tang, X. Zhang, and Y. Han, “Experimental research on damage characteristics of CFRP/aluminum foam sandwich structure subjected to high velocity impact,” Journal of Materials Research and Technology, vol. 8, pp. 4620-4630, (2019).
[TUN] N. Tuncer, and G. Arslan, “Designing compressive properties of titanium foams,” Journal of Materials Science, vol. 44, pp. 1477-1484, (2009).
[UDO] A. Udovsky, and D. Vasilyev, “Quantum-mechanical calculations of mixing enthalpy of the bcc phase of the Fe-Mo system for the ground state,” Journal of Physics: Conference Series, vol. 1658, 012066, (2020).
[VEA] P. J. Veale, “Investigation of the behavior of open cell aluminum foam.” pp. 1-18, (2010).
[WAN1] Z. Wang, B. Hong, G. Xian, M. Xin, S. Huang, and H. Shen, “Quasi-static and low-velocity impact behaviors of steel-aluminum foam sandwich beams,” Structures, vol. 64, 106549, (2024).
[WAN2] E. Wang, R. Yao, Q. Li, X. Hu, and G. Sun, “Lightweight metallic cellular materials: A systematic review on mechanical characteristics and engineering applications,” International Journal of Mechanical Sciences, vol. 270, 108795, (2024).
[WU] M. W. Wu, and K. S. Hwang, “Formation mechanism of weak ferrite areas in Ni-containing powder metal steels and methods of strengthening them,” Materials Science and Engineering: A, vol. 527, pp. 5421-5429, (2010).
[XIA] X. C. Xia, X. W. Chen, Z. Zhang, X. Chen, W. M. Zhao, B. Liao, and B. Hur, “Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam,” Journal of Magnesium and Alloys, vol. 1, pp. 330-335, (2013).
[YAN] D. Yang, H. Wang, S. Guo, J. Chen, Y. Xu, D. Lei, J. Sun, L. Wang, J. Jiang, and A. Ma, “Coupling effect of porosity and cell size on the deformation behavior of Al alloy foam under quasi-static compression,” Materials, vol. 12, pp. 951-960, (2019).
[YU] C.-J. Yu, H. H. Eifert, J. Banhart, and J. Baumeister, “Metal foaming by a powder metallurgy method: Production, properties and applications,” Materials Research Innovations, vol. 2, pp. 181-188, (1998).
[ZIM] Z. Zimar, M. H. Nowsath, M. N. Muhammad, and S. Herath, “Non-linear behaviour of open-cell metal foam under tensile loading,” pp. 349-354, (2016).
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2024-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明