參考文獻 |
[ASH] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wadley, and F. Delale, “Metal foams: A design guide,” pp. 6-23, (2000).
[ASTM1] ASTM E92−23, “Standard test methods for vickers hardness and knoop hardness of metallic materials,” ASTM International, (2023).
[ASTM2] ASTM E9−19, “Standard test methods of compression testing of metallic materials at room temperature,” ASTM International, (2019).
[BAK] H. I. Bakan, “A novel water leaching and sintering process for manufacturing highly porous stainless steel,” Scripta Materialia, vol. 55, pp. 203-206, (2006).
[BAL] D. K. Balch, J. G. O’Dwyer, G. R. Davis, C. M. Cady, G. T. Gray, and D. C. Dunand, “Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions,” Materials Science and Engineering: A, vol. 391, pp. 408-417, (2005).
[BAN1] J. Banhart, “Aluminium foams for lighter vehicles,” International Journal of Vehicle Design, vol. 37, pp. 114-125, (2005).
[BAN2] J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Progress in Materials Science, vol. 46, pp. 559-632, (2001).
[BEK] N. Bekoz, and E. Oktay, “High temperature mechanical properties of low alloy steel foams produced by powder metallurgy,” Materials & Design, vol. 53, pp. 482-489, (2014).
[BHA] H. K. D. H. Bhadeshia, and R. W. K. Honeycombe, “Steels : microstructure and properties,” Elsevier, Butterworth-Heinemann, pp. 195-197, (2006).
[CAC] G. Cacciamani, J. De Keyzer, R. Ferro, U. E. Klotz, J. Lacaze, and P. Wollants, “Critical evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti alloy systems,” Intermetallics, vol. 14, pp. 1312-1325, (2006).
[CAS] G. Castro, and S. R. Nutt, “Synthesis of syntactic steel foam using gravity-fed infiltration,” Materials Science and Engineering: A, vol. 553, pp. 89-95, (2012).
[CLA] K. D. Clarke, “Austenite formation and microstructural control in low-alloy steels,” Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. Van Tyne and B. Yilbas, eds., Oxford: Elsevier, pp. 345-361, (2014).
[ELE] E. Elettore, M. Latour, M. D’Aniello, R. Landolfo, and G. Rizzano, “Prototype tests on screwed steel–aluminium foam–steel sandwich panels,” Buildings, vol. 13, pp. 2836-2847, (2023).
[FU] W. Fu, and Y. Li, “Fabrication, processing, properties, and applications of closed-cell aluminum foams: A review,” Materials (Basel), vol. 17, pp. 560-586, (2024).
[GEN] M. J. Van Genderen, M. Isac, A. Böttger, and E. J. Mittemeijer, “Aging and tempering behavior of iron-nickel-carbon and iron-carbon martensite,” Metallurgical and Materials Transactions A, vol. 28, pp. 545-561, (1997).
[GIB1] L. J. Gibson and M. F. Ashby, “Introduction,” Cellular Solids: Structure and Properties, Cambridge solid state science series, eds., Cambridge: Cambridge university press, pp. 1-14, (1997).
[GIB2] L. J. Gibson, M. F. Ashby, J. Zhang, and T. C. Triantafillou, “Failure surfaces for cellular materials under multiaxial loads—I.Modelling,” International Journal of Mechanical Sciences, vol. 31, pp. 635-663, (1989).
[GOO] R. Goodall, and A. Mortensen, “Porous metals,” Physical Metallurgy (Fifth Edition), D. E. Laughlin and K. Hono, eds., Oxford: Elsevier, pp. 2399-2595, (2014).
[HAS] A. S. M. A. Haseeb, M. Arita, and Y. Hayashi, “Thermal decomposition study of electrodeposited Fe-C and Fe-Ni-C alloys by differential scanning calorimetry,” Journal of Materials Science, vol. 36, pp. 4739-4743, (2001).
[HSU] C.-M. Hsu, Y.-C. Tzeng, S.-F. Chen, Y.-L. Chen, and H.-L. Lee, “Fabrication of 17‐4PH stainless steel foam by a pressureless powder space holder technique,” Advanced Engineering Materials, vol. 23, 2001202, (2021).
[HU] G. Hu, G. Xu, Q. Gao, Z. Feng, P. Huang, and G. Zu, “Compressive properties and energy absorption behavior of 316L steel foam prepared by space holder technique,” Materials, vol. 16, pp. 1419-1431, (2023).
[HUA] R. Huang, S. Ma, M. Zhang, J. Xu, and Z. Wang, “Dynamic deformation and failure process of quasi-closed-cell aluminum foam manufactured by direct foaming technique,” Materials Science and Engineering: A, vol. 756, pp. 302-311, (2019).
[LEF] L.-P. Lefebvre, J. Banhart, and D. Dunand, “Porous metals and metallic foams: current status and recent developments,” Advanced Engineering Materials, vol. 10, pp. 775-787, (2008).
[LI] Q. M. Li, I. Magkiriadis, and J. J. Harrigan, “Compressive strain at the onset of densification of cellular solids,” Journal of Cellular Plastics, vol. 42, pp. 371-392, (2006).
[LIU] K. Liu, S.-B. Kang, and S. Gao, “Experimental and analytical study on impact response of stainless steel-aluminium foam-alloy steel sandwich panels,” International Journal of Impact Engineering, vol. 179, 104661, (2023).
[LUO] Z.-B. Luo, H.-J. Dong, Z.-Y. Ma, L.-J. Zou, X.-L. Zhu, and L. Lin, “Orientation relationship between ferrite and austenite and its influence on ultrasonic attenuation in cast austenitic stainless steel,” Acta Physica Sinica, vol. 67, 238102, (2018).
[MAA] M. Maalekian, “The effects of alloying elements on steels (I),” pp. 1-29, (2007).
[MAD] M. Madgule, C. G. Sreenivasa, and A. V. Borgaonkar, “Aluminium metal foam production methods, properties and applications - a review,” Materials Today: Proceedings, vol. 77, pp. 673-679, (2023).
[MAR] J. Marx, M. Portanova, and A. Rabiei, “Performance of composite metal foam armors against various threat sizes,” Journal of Composites Science, vol. 4, pp. 176-193, (2020).
[MAT] R. Matsumoto, S. Kunisawa, and H. Utsunomiya, “Pore form and size dependence on plastic joining characteristics of resin/metallic foam by friction stir incremental forming,” The International Journal of Advanced Manufacturing Technology, vol. 132, pp. 717-726, (2024).
[MIY1] T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, “Alporas aluminum foam: Production process, properties, and applications,” Advanced Engineering Materials, vol. 2, pp. 179-183, (2000).
[MIY2] T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara, “Aluminum foam, alporas: The production process, properties and applications,” MRS Online Proceedings Library, vol. 521, pp. 133-137, (1998).
[MOR] P. V. Morra, A. J. Böttger, and E. J. Mittemeijer, “Decomposition of Iron-based Martensite. A kinetic analysis by means of differential scanning calorimetry and dilatometry,” Journal of Thermal Analysis and Calorimetry, vol. 64, pp. 905-914, (2001).
[MUS] N. V. Mushnikov, A. G. Popov, V. S. Gaviko, A. V. Protasov, N. M. Kleinerman, O. A. Golovnya, and S. P. Naumov, “Peculiarities of phase diagram of Fe-Ni system at Ni concentrations 0 – 20 at.%,” Acta Materialia, vol. 240, 118330, (2022).
[NAW] A. Nawaz, and S. Rani, “Fabrication methods and property analysis of metal foams – a technical overview,” Materials Science and Technology, vol. 39, pp. 1877-1902, (2023).
[NEV] B. P. Neville, and A. Rabiei, “Composite metal foams processed through powder metallurgy,” Materials & Design, vol. 29, pp. 388-396, (2008).
[PAR] C. Park, and S. R. Nutt, “PM synthesis and properties of steel foams,” Materials Science and Engineering: A, vol. 288, pp. 111-118, (2000).
[PRE] M. Preciado, and M. Pellizzari, “Influence of deep cryogenic treatment on the thermal decomposition of Fe–C martensite,” Journal of Materials Science, vol. 49, pp. 8183-8191, (2014).
[QI] C. Qi, C. Yu, S. Yang, M.-X. Yang, and L.-P. Cui, “Processing, characterization and mechanical properties of welded steel hollow sphere-reinforced aluminum matrix composites,” Journal of Materials Science, vol. 58, pp. 5865-5883, (2023).
[RAB] A. Rabiei, and M. Garcia-Avila, “Effect of various parameters on properties of composite steel foams under variety of loading rates,” Materials Science and Engineering: A, vol. 564, pp. 539-547, (2013).
[SIN] S. Singh, and N. Bhatnagar, “A survey of fabrication and application of metallic foams (1925–2017),” Journal of Porous Materials, vol. 25, pp. 537-554, (2018).
[SUM] A. Suman, A. Fortini, O. Vezzani, and M. Merlin, “Microstructural investigation and impact strength of sinter-hardened PM steels: Influence of Ni content and tempering temperature,” Metals, vol. 13, pp. 1940-1955, (2023).
[SZL] A. Szlancsik, B. Katona, K. Bobor, K. Májlinger, and I. Orbulov, “Compressive behaviour of aluminium matrix syntactic foams reinforced by iron hollow spheres,” in Materials & Design, pp. 230-237, (2015).
[TAN] E. Tang, X. Zhang, and Y. Han, “Experimental research on damage characteristics of CFRP/aluminum foam sandwich structure subjected to high velocity impact,” Journal of Materials Research and Technology, vol. 8, pp. 4620-4630, (2019).
[TUN] N. Tuncer, and G. Arslan, “Designing compressive properties of titanium foams,” Journal of Materials Science, vol. 44, pp. 1477-1484, (2009).
[UDO] A. Udovsky, and D. Vasilyev, “Quantum-mechanical calculations of mixing enthalpy of the bcc phase of the Fe-Mo system for the ground state,” Journal of Physics: Conference Series, vol. 1658, 012066, (2020).
[VEA] P. J. Veale, “Investigation of the behavior of open cell aluminum foam.” pp. 1-18, (2010).
[WAN1] Z. Wang, B. Hong, G. Xian, M. Xin, S. Huang, and H. Shen, “Quasi-static and low-velocity impact behaviors of steel-aluminum foam sandwich beams,” Structures, vol. 64, 106549, (2024).
[WAN2] E. Wang, R. Yao, Q. Li, X. Hu, and G. Sun, “Lightweight metallic cellular materials: A systematic review on mechanical characteristics and engineering applications,” International Journal of Mechanical Sciences, vol. 270, 108795, (2024).
[WU] M. W. Wu, and K. S. Hwang, “Formation mechanism of weak ferrite areas in Ni-containing powder metal steels and methods of strengthening them,” Materials Science and Engineering: A, vol. 527, pp. 5421-5429, (2010).
[XIA] X. C. Xia, X. W. Chen, Z. Zhang, X. Chen, W. M. Zhao, B. Liao, and B. Hur, “Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam,” Journal of Magnesium and Alloys, vol. 1, pp. 330-335, (2013).
[YAN] D. Yang, H. Wang, S. Guo, J. Chen, Y. Xu, D. Lei, J. Sun, L. Wang, J. Jiang, and A. Ma, “Coupling effect of porosity and cell size on the deformation behavior of Al alloy foam under quasi-static compression,” Materials, vol. 12, pp. 951-960, (2019).
[YU] C.-J. Yu, H. H. Eifert, J. Banhart, and J. Baumeister, “Metal foaming by a powder metallurgy method: Production, properties and applications,” Materials Research Innovations, vol. 2, pp. 181-188, (1998).
[ZIM] Z. Zimar, M. H. Nowsath, M. N. Muhammad, and S. Herath, “Non-linear behaviour of open-cell metal foam under tensile loading,” pp. 349-354, (2016). |