參考文獻 |
[1] Dimitrov, R., et al. "Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and metalorganic chemical vapor deposition on sapphire." Journal of Applied Physics 87(7), pp. 3375-3380, 2000.
[2] Prabaswara, Aditya, et al. "Review of GaN thin film and nanorod growth using magnetron sputter epitaxy." Applied Sciences 10(9), pp. 3050, 2020
[3] Grzegory, I., and S. Porowski. "Properties, processing and applications of Gallium Nitride and Related Semiconductors." EMIS Datareview Series 23, pp. 359-367, 1999.
[4] Medjdoub, Farid, ed. Gallium nitride (GaN): physics, devices, and technology. CRC Press, 2017.
[5] Liu, L., and James H. Edgar. "Substrates for gallium nitride epitaxy." Materials Science and Engineering: R: Reports 37.3 61-127. (2002).
[6] Johnson, Warren C., J. B. Parson, and M. C. Crew. "Nitrogen compounds of gallium. iii." The journal of physical chemistry 36(10), pp. 2651-2654, 2002.
[7] Willardson, Robert K., et al. Gallium-Nitride (GaN) II. Vol. 57. Academic Press, 1998.
[8] Hovel, H.J.; Cuomo, J.J. “Electrical and Optical Properties of rf-Sputtered GaN and InN.’’Appl. Phys. Lett , 20, 71–73 ,1972.
[9] Zembutsu, S.; Kobayashi, M. “The growth of c-axis-oriented GaN films by D.C.-biased reactive sputtering.’’, Thin Solid Films ,129 ,289–297 ,1985.
[10] Puychevrier, N.; Menoret, “M. Synthesis of III–V semiconductor nitrides by reactive cathodic sputtering.’’ ThinSolid Films , 36, 141–145,1976.
[11] Amano, Hiroshi, et al. "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer." Applied Physics Letters 48.5: 353-355 (1986).
[12] S. Nakamura “ GaN Growth Using GaN Buffer Layer ” , J. Appl. Phys. , 30 , 1705 , 1991
[13] Kouznetsov, Vladimir, et al. "A novel pulsed magnetron sputter technique utilizing very high target power densities." Surface and coatings technology 122(2-3), pp. 290-293, 1999.
[14] Dadgar, Armin, et al. "Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness." Japanese Journal of Applied Physics 39(11B), L1183, 2000.
[15] Tripathy, Sudhiranjan, et al. "AlGaN/GaN two-dimensional-electron gas heterostructures on 200 mm diameter Si (111)." Applied Physics Letters 101.8 : 4-8 (2012).
[16] Piquette, E. C., et al. "Effect of buffer layer and III/V ratio on the surface morphology of GaN grown by MBE." MRS Online Proceedings Library (OPL) 537: G3-77(1998).
[17] Wong, Man Hoi, et al. "N-polar GaN epitaxy and high electron mobility transistors." Semiconductor Science and Technology 28.7: 074009 (2013).
[18] Sugahara, Tomoya, Jeong-Sik Lee, and Kohji Ohtsuka. "Role of AlN/GaN Multilayer in Crack-Free GaN Layer Growth on 5” φ Si (111) Substrate." Japanese journal of applied physics 43.12B: L1595(2004).
[19] Ehiasarian, A. P., et al. "High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization." Applied Physics Letters 100.11 (2012).
[20] Nakamura, Shuji, et al. "High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes." Applied Physics Letters 67.13: 1868-1870 (1995).
[21] 林麗娟,「X 光繞射原理及其應用」,工業材料,86,100-109,2000
[22] 吳政鴻,「參雜量對氮化銦鎵/氮化鎵多層量子井光學與結構特性之研究」,國立義守大學電子工程學系,碩士論文,2009
[23] Kelly, Peter J., and R. Derek Arnell. "Magnetron sputtering: a review of recent developments and applications." Vacuum 56(3), pp. 159-172, 2000.
[24] Helmersson, Ulf, et al. "Ionized physical vapor deposition (IPVD): A review of technology and applications." Thin solid films 513(1-2), pp. 1-24, 2006.
[25] Sarakinos, Kostas, Jones Alami, and Stephanos Konstantinidis. "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art." Surface and coatings technology 204(11), pp. 1661-1684, 2010.
[26] Gudmundsson, Jon Tomas, et al. "High power impulse magnetron sputtering discharge." Journal of Vacuum Science & Technology A 30.3 pp. 25-40 (2012).
[27] Sarakinos, Kostas, Jones Alami, and Stephanos Konstantinidis. "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art." Surface and coatings technology 204.11: 1661-1684(2010).
[28] Gilioli, Edmondo, and Francesco Pattini. "Growth of oxide thin films for energy devices by Pulsed Electron Deposition."Stringfellow, Gerald B. Organometallic vapor-phase epitaxy: theory and practice. Elsevier, 1999.
[29] Stringfellow, G. B. "Fundamental aspects of organometallic vapor phase epitaxy." Materials Science and Engineering: B 87.2: 97-116 (2001).
[30] Thompson, Alan G. "MOCVD technology for semiconductors." Materials Letters 30.4: 255-263 (1997).
[31] What Is HiPIMS?" Semicore, www.semicore.com/news/93-what-is-hipims. Accessed 27 June 2024.
[32] 原子力顯微镜原理(atomic force microscope, AFM),取自http://www.pelttech.com/item_10_221_0.shtml
[33] 林昆霖,「肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡」,國家奈米元件實驗室奈米通訊,第20期,34-38頁,2013
[34] 張守諒。「氮化矽層抑制氮化鎵成長於(111)矽基板之回熔蝕刻現象研究」。碩士論文,國立交通大學材料科學與工程學系所,2014。<https://hdl.handle.net/11296/f9x595>。
[35] Yi, M. S., et al. "Effects of growth temperature on GaN nucleation layers." Applied Physics Letters 75.15: 2187-2189(1999).
[36] Cheng, Kun, et al. "Epitaxial growth of high-quality GaAs on Si (001) using ultrathin buffer layers." AIP Advances 14.3 pp.10-14(2024).
[37] Park, Jae-Seong, et al. "Heteroepitaxial growth of III-V semiconductors on silicon." Crystals 10.12: 1163(2020).
[38] Yi, M. S., et al. "Effects of growth temperature on GaN nucleation layers." Applied Physics Letters 75.15: 2187-2189 (1999).
[39] Tuan, Thi Tran Anh, et al. "Effect of temperature dependence on electrical characterization of pn GaN diode fabricated by RF magnetron sputtering." Materials Sciences and Applications 6.9: 809-817(2015).
[40] Schiaber, Ziani S., et al. "Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering." Journal of Applied Physics 114.18 (2013).
[41] Takemoto, Kikurou, et al. "Growth of GaN directly on Si (111) substrate by controlling atomic configuration of Si surface by metalorganic vapor phase epitaxy." Japanese journal of applied physics 45.5L: L478 (2006).
[42] 電漿前處理(Plasma Treatment Technology)原理簡述,取自: https://www.atom-semi.com/article_detail/22.htm
[43] Nakada, Yoshinobu, Igor Aksenov, and Hajime Okumura. "GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si (111) surfaces by plasma-assisted molecular beam epitaxy." Applied physics letters 73.6: 827-829(1998).
[44] Wang, Z. T., et al. "Atomistic study of GaN surface grown on Si (111)." Applied Physics Letters 87.3 (2005).
[45] Arifin, Pepen, et al. "Plasma-assisted MOCVD growth of non-polar GaN and AlGaN on Si (111) substrates utilizing GaN-AlN buffer layer." Coatings 12.1: 94 (2022).
[46] 鄭崇汶。「利用脈衝磁控濺鍍磊晶成長氮化鎵薄膜於藍寶石基板之研究」。碩士論文,國立中央大學光電科學與工程學系,2021。<https://hdl.handle.net/11296/6h8pk4>。
[47] Majchrzak, Dominika, et al. "Influence of pulsed Al deposition on quality of Al-rich Al (Ga) N structures grown by molecular beam epitaxy." Surfaces and Interfaces 27, pp. 101560, 2021.
[48] 陳治光。「利用脈衝磁控濺鍍磊晶成長低溫氮化鎵磊晶層於矽基板之研究」。碩士論文,國立中央大學光電科學與工程學系,2022。
[49] Viloan, Rommel Paulo B., et al. "Pulse length selection for optimizing the accelerated ion flux fraction of a bipolar HiPIMS discharge." Plasma Sources Science and Technology 29(12), pp. 125013, 2020.
[50] Suliali, Nyasha J., et al. "Ti thin films deposited by high-power impulse magnetron sputtering in an industrial system: Process parameters for a low surface roughness." Vacuum 195: 110698 (2022).
[51] Schneider, J. M., L. Hultman, et al. "Surface roughness and crystalline structure of CrN thin films grown by HiPIMS." Surface and Coatings Technology, vol. 203, issues 15-16, 2009,
[52] Ehiasarian, A. P., et al. "The influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films." Journal of Applied Physics 101.5: 054301 (2007).
[53] Schneider, J. M., et al. "The role of process parameters on the growth and properties of high power impulse magnetron sputtered CrN films." Surface and Coatings Technology 204.6-7: 947-951 (2009).
[54] Zhao, Xiaoli, et al. "Effect of pulsed off-times on the reactive HiPIMS preparation of zirconia thin films." Vacuum 118, pp. 38-42, 2015.
[55] Lundin, Daniel, Tiberiu Minea, and Jon Tomas Gudmundsson, eds. "High power impulse magnetron sputtering: fundamentals, technologies, challenges and applications." :04-07(2019).
[56] Okada, Hiroshi, et al. "Investigation of HCl-based surface treatment for GaN devices." AIP Conference Proceedings. 1709(1), AIP Publishing LLC, 2016.
[57] Zhou, X. W., and H. N. G. Wadley. "Atomistic simulations of low
energy ion assisted vapor deposition of metal multilayers." Journal of Applied Physics 87(5), pp. 2273-2281, 2000.
[58] Ren, Yongjie, et al. "Effects of HiPIMS Duty Cycle on Plasma Discharge and the Properties of Cu Film." Materials 17.10: 2311(2024).
[59] Monish, Mohammad, Shyam Mohan, and S. S. Major. "Effect of nitrogen partial pressure on the microstructure of epitaxial GaN films grown by rf magnetron sputtering." AIP Conference Proceedings. Vol. 2115. No. 1. AIP Publishing, 2019.
[60] 涂如欽、蘇炎坤、李玟良. "有機金屬化學氣相沉積法在成長砷化銦-銻化鎵第二類超晶格上之應用." 真空科技, vol. 8, no. 3-4, 1995, pp. 1-34. https://tpl.ncl.edu.tw/NclService/JournalQuery.
[61] Tanide, Atsushi, et al. "Roles of atomic nitrogen/hydrogen in GaN film growth by chemically assisted sputtering with dual plasma sources." ACS omega 5(41), pp. 26776-26785, 2020.
[62] Junaid, Muhammad, et al. "Effects of N2 partial pressure on growth, structure, and optical properties of GaN nanorods deposited by liquid-target reactive magnetron sputter epitaxy." Nanomaterials 8.4: 223(2018).
[63] Sanchez-Garcia, M. A., et al. "The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN-and AlN-layers grown by molecular beam epitaxy on Si (1 1 1)." Journal of crystal growth 183.1-2: 23-30(1998).
[64] Zhang, Yuxuan, et al. "Laser‐assisted metal–organic chemical vapor deposition of gallium nitride." physica status solidi (RRL)–Rapid Research Letters 15.6: 2100202 (2021).
[65] 陳書雋。「氮極性面氮化鎵基板之磷酸蝕刻活化能與表面形貌特性研究」。碩士論文,國立交通大學電子物理系所,2013。<https://hdl.handle.net/11296/59p3qh>。
[66] Zhuang, Dejin, and J. H. Edgar. "Wet etching of GaN, AlN, and SiC: a review." Materials Science and Engineering: R: Reports 48.1: 1-46(2005).
[67] Jung, Younghun, et al. "Chemical etch characteristics of N-face and Ga-face GaN by phosphoric acid and potassium hydroxide solutions." Journal of The Electrochemical Society 159.2: H117 (2011).
[68] Li, Dongsheng, et al. "Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy." Journal of Applied Physics 90.8: 4219-4223 (2001).
[69] Mohanty, Subhajit, Kamruzzaman Khan, and Elaheh Ahmadi. "N-polar GaN: Epitaxy, properties, and device applications." Progress in Quantum Electronics 87: 100450 (2023).
[70] Singisetti, Uttam, Man Hoi Wong, and Umesh K. Mishra. "High-performance N-polar GaN enhancement-mode device technology." Semiconductor science and technology 28.7: 074006 (2013).
[71] Zolper, J. C., et al. "Morphology and photoluminescence improvements from high‐temperature rapid thermal annealing of GaN." Applied physics letters 68.2: 200-202 (1996). |