博碩士論文 110329025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:18.116.63.248
姓名 陳仕軒(Shih-Hsuan Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 透過退火和添加鉍在二氧化碳還原反應中提高銅基催化劑的高碳產物效率和調節選擇性之研究
(Enhancing C2+ Product Efficiency and Regulating Selectivity in Copper-Based Catalysts through Annealing and Bismuth Addition in CO2 Reduction Reaction)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 隨著全球氣溫上升和環境變化,控制大氣中的 CO2含量已成為全球環保目
標。電化學CO2還原反應(CO2RR)是一種將有害的CO2轉化為有價值燃料的有效策略。然而,CO2RR面臨許多挑戰,包括競爭性的析氫反應(HER)、選擇性和穩定性問題,導致CO2轉化效率低下,以及對貴金屬催化劑的依賴。
在本研究中,透過退火將Cu/C氧化為CuO/C以提高C2+產物的效率。X光
電子能譜(XPS)分析顯示,退火後結構轉變為CuO/C,同時表面產生了大量的氧空位(Ovac),Ovac與晶格氧(Olat)的比值達到了3.2,高於Cu/C的1.8。因此,C2+產物的法拉第效率(FEC2+)在-1.1 V vs. RHE (VRHE)時達到 66.5%,分電流密度為14.4 mA/cm2,穩定性為10小時。而Cu/C在相同電壓下FEC2+只有59.4%且分電流密度也只有12.6 mA/cm2,表明 Ovac能夠提升銅基觸媒的活性與選擇性.透過原位X光吸收光譜進一步分析發現,與-1.2 VRHE相比,CuO/C在-1.1 VRHE時具有更多的不飽和配位,表明CuO/C的最佳工作電壓為-1.1 VRHE。 為了進一步調節選擇性,添加了少量的 Bi (Cu/Bi=99/1 和 98/2)。1% Bi@CuO/C 在-1.2 VRHE時的 CH4法拉第效率(FECH4)為42.3%,分電流密度為10.0 mA/cm2,穩定性為7小時。然而,2% Bi@CuO/C的FECH4下降到6.8%,而 FEHCOOH增加到33.8%。這表明Bi可以誘導電子轉移,顯著影響選擇性。XPS分析顯示,
1% Bi@CuO/C 的Ovac/Olat比值為 3.2,高於2% Bi@CuO/C的1.6,表明過量添加Bi 可能會減少Ovac活性位點的數量。原位X光吸收光譜進一步顯示,Bi的添加使工作電壓下的Cu-O和Bi-O鍵保持穩定,且Cu-Bi鍵的形成增強了催化性能。本研究強調,透過退火和少量Bi的添加可以增強銅基催化劑的催化活性,有效調節選擇性,並保持優異的穩定性。這為未來以碳氫化合物為目標的CO2RR催化劑設計提供了新的方向。
摘要(英) As global temperatures rise and environmental changes occur, controlling atmospheric carbon dioxide (CO2) levels has become a worldwide environmental goal. Electrochemical CO2 reduction reaction (CO2RR) is an effective strategy to convert harmful CO2 into valuable fuels. However, CO2RR faces several challenges, including the competitive hydrogen evolution reaction (HER), selectivity and stability issues
leading to low CO2 conversion efficiency, and reliance on noble metals catalysts. In this study, Cu/C was oxidized to CuO/C to enhance the efficiency of C2+ products. X-ray photoelectron spectroscopy (XPS) analysis revealed that after annealing, the structure transformed into CuO/C with the surface generating numerous oxygen vacancies (Ovac), and the ratio of Ovac to lattice oxygen (Olat) reached 3.2, higher than 1.8 for Cu/C. As a result, the Faradaic efficiency of C2+ products (FEC2+) at -1.1 V vs. RHE (VRHE)reaches 66.5%, with a partial current density of 14.4 mA/cm2 and the stability of 10 hours. Under the same voltage, Cu/C exhibited only 59.4% FEC2+ and a
partial current density of 12.6 mA/cm², indicating that Ovac can enhance the activity and selectivity of Cu-based catalysts. Further analysis by in-situ X-ray absorption
spectroscopy (in-situ XAS) indicated that CuO/C confirmed more unsaturated coordination at -1.1 VRHE compared to -1.2 VRHE, suggesting that the optimal operating voltage for CuO/C is -1.1 VRHE. To further tune the selectivity, a low amount of Bi was added (Cu/Bi=99/1 and 98/2). The 1% Bi@CuO/C achieved a CH4 Faradaic efficiency (FECH4) of 42.3% at -1.2 VRHE, with a partial current density of 10.0 mA/cm2 and stability of 7 hours. However, the FECH4 of 2% Bi@CuO/C decreased to 6.8%, while the FEHCOOH increased to 33.8%.
This indicates that Bi can induce electron transfer, significantly influencing selectivity. XPS analysis showed that the Ovac/Olat ratio for 1% Bi@CuO/C was 3.2, higher than 1.6 for 2% Bi@CuO/C, indicating that excessive Bi addition could reduce the number of Ovac active sites. In-situ XAS further revealed that the addition of Bi maintained the stability of Cu-O and Bi-O bonds under operating voltage, and the formation of Cu-Bi bonds enhanced the catalytic performance. This study highlights that annealing and the addition of a low amount of Bi can enhance the catalytic activity of Cu-based catalysts, effectively modulate selectivity, and maintain excellent stability. It provides a new direction for future CO2RR catalyst design targeting hydrocarbon production.
關鍵字(中) ★ 二氧化碳還原反應(CO2RR)
★ 銅鉍觸媒
★ 退火
★ 氧空缺
★ 甲烷
★ C2+產物
★ 原位X光吸收光譜
關鍵字(英) ★ carbon dioxide reduction reaction (CO2RR)
★ Cu-Bi catalysts
★ annealing
★ oxygen vacancies
★ CH4
★ C2+ products
★ X-ray absorption spectroscopy (in-situ XAS)
論文目次 摘要...................................................... i
Abstract................................................. ii
致謝..................................................... iv
Table of Contents ...................................... vii
List of Figures ......................................... ix
List if Tables........................................... xi
Chapter 1 Introduction ................................... 1
1.1 The Mechanism of CO2RR ............................... 2
1.2 The Modification of CO2RR Catalyst.................... 6
1.3 Cu-Based and Bi-Based CO2RR Catalysts ................ 8
1.4 Motivation .......................................... 11
Chapter 2 Experimental Section .......................... 12
2.1 Preparation of Catalysts ............................ 12
2.1.1 Reagents .......................................... 12
2.1.2 Synthesis of Bi@CuO/C catalysts ................... 12
2.1.3 Synthesis of Cu/C and CuO/C catalysts.............. 13
2.1.4 Synthesis of Bi2O3/C catalysts .................... 13
2.2 Materials Characterization .......................... 14
2.3 Electrochemical Characterization..................... 15
2.3.1 CO2RR measurement ................................. 15
2.3.2 Product quantitative analysis ..................... 17
Chapter 3 Results and Discussion ........................ 21
3.1 Materials Characterizations ......................... 21
3.2 The Electrochemical Characterizations of Cu-Bi Catalysts ......................................................... 31
3.2.1 Electrochemical CO2RR performance ................ 31
3.2.2 Cdl and ECSA of catalysts ......................... 34
3.3 In-situ XAS analysis ................................ 38
3.3.1 Cu K-edge of CuO/C at -1.1 and -1.2 VRHE .......... 38
3.3.2 Cu K-edge of CuO/C and 1%Bi@CuO/C at -1.2 VRHE .... 43
3.3.3 Bi L3-edge of Bi2O3/C and Bi@CuO/C at -1.2 VRHE ... 43
Chapter 4 Conclusion .................................... 44
References .............................................. 46
參考文獻 [1] Wang, G., Chen, J., Ding, Y., Cai, P., Yi, L., Li, Y., Tu, C., Hou, Y., Wen, Z., Dai, L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993-5061.
[2] Tan, X., Yu, C., Ren, Y., Cui, S., Li, W., Qiu, J. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765-780.
[3] Song, T., Liu, H., Liu, E., Wang, F., Cui, L., Zhang, X., Liu, T. Metal doping promotes the efficient electrochemical reduction of CO2 to CO in CuO nanosheets. Inorg. Chem. Commun. 2023, 155, 110976.
[4] Ren, W., Tan, X., Qu, J., Li, S., Li, J., Liu, X., Ringer, S. P., Cairney, J. M., Wang, K., Smith, S. C. Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion. Nat. Commun. 2021, 12, 1449.
[5] Bushuyev, O. S., De Luna, P., Dinh, C. T., Tao, L., Saur, G., van de Lagemaat, J., Kelley, S. O., Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825-832.
[6] Li, K., Peng, B., Peng, T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485-7527.
[7] Ahmad, T., Liu, S., Sajid, M., Li, K., Ali, M., Liu, L., Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.
[8] Lim, R. J., Xie, M., Sk, M. A., Lee, J. M., Fisher, A., Wang, X., Lim, K. H. A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal. Today 2014, 233, 169-180.
[9] Zou, Y., Wang, S. An investigation of active sites for electrochemical CO2 reduction reactions: from in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.
[10] Liu, A., Gao, M., Ren, X., Meng, F., Yang, Y., Gao, L., Yang, Q., Ma, T. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J. Mater. Chem. A 2020, 8, 3541-3562.
[11] Zhang, W., Hu, Y., Ma, L., Zhu, G., Wang, Y., Xue, X., Chen, R., Yang, S., Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.
[12] Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed. 2015, 54, 3465-3520.
[13] Zhu, D. D., Liu, J. L., Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423-3452.
[14] Jones, J. P., Prakash, G. S., Olah, G. A. Electrochemical CO2 reduction: recent advances and current trends. Isr. J. Chem. 2014, 54, 1451-1466.
[15] Hori, Y., Wakebe, H., Tsukamoto, T., Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833-1839.
[16] Roduner, E. Understanding catalysis. Chem. Soc. Rev. 2014, 43, 8226-8239.
[17] Grenoble, D., Estadt, M., Ollis, D. The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts. J. Catal. 1981, 67, 90-102.
[18] Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P., Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957-3971.
[19] Seh, Z. W., Kibsgaard, J., Dickens, C. F., Chorkendorff, I., Nørskov, J. K., Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[20] Mistry, H., Varela, A. S., Kühl, S., Strasser, P., Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 1-14.
[21] Wang, L., Chen, W., Zhang, D., Du, Y., Amal, R., Qiao, S., Wu, J., Yin, Z. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310-5349.
[22] Xia, Z., Guo, S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265-3278.
[23] Wang, Q., Lei, Y., Wang, D., Li, Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730-1750.
[24] Jia, Y., Jiang, K., Wang, H., Yao, X. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371-1397.
[25] Xie, C., Yan, D., Chen, W., Zou, Y., Chen, R., Zang, S., Wang, Y., Yao, X., Wang, S. Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater. Today 2019, 31, 47-68.
[26] Sun, K., Cheng, T., Wu, L., Hu, Y., Zhou, J., Maclennan, A., Jiang, Z., Gao, Y., Goddard III, W. A., Wang, Z. Ultrahigh mass activity for carbon dioxide reduction enabled by gold–iron core–shell nanoparticles. J. Am. Chem. Soc. 2017, 139, 15608-15611.
[27] Mistry, H., Choi, Y. W., Bagger, A., Scholten, F., Bonifacio, C. S., Sinev, I., Divins, N. J., Zegkinoglou, I., Jeon, H. S., Kisslinger, K. Enhanced carbon dioxide electroreduction to carbon monoxide over defect‐rich plasma‐activated silver catalysts. Angew. Chem. Int. Ed. 2017, 129, 11552-11556.
[28] Liu, Y., Zhang, Y., Cheng, K., Quan, X., Fan, X., Su, Y., Chen, S., Zhao, H., Zhang, Y., Yu, H. Selective electrochemical reduction of carbon dioxide to ethanol on a boron‐and nitrogen‐Co‐doped nanodiamond. Angew. Chem. Int. Ed. 2017, 129, 15813-15817.
[29] Wu, J., Ma, S., Sun, J., Gold, J. I., Tiwary, C., Kim, B., Zhu, L., Chopra, N., Odeh, I. N., Vajtai, R. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.
[30] Ren, D., Wong, N. T., Handoko, A. D., Huang, Y., Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 2016, 7, 20-24.
[31] Liu, C., Lourenço, M. P., Hedström, S., Cavalca, F., Diaz-Morales, O., Duarte, H. A., Nilsson, A., Pettersson, L. G. Stability and effects of subsurface oxygen in oxide-derived Cu catalyst for CO2 reduction. J. Phys. Chem. C 2017, 121, 25010-25017.
[32] Saravanan, K., Basdogan, Y., Dean, J., Keith, J. A. Computational investigation of CO2 electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis. J. Mater. Chem. A 2017, 5, 11756-11763.
[33] Gu, Z., Yang, N., Han, P., Kuang, M., Mei, B., Jiang, Z., Zhong, J., Li, L., Zheng, G. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 2019, 3, 1800449.
[34] Kim, C., Dionigi, F., Beermann, V., Wang, X., Möller, T., Strasser, P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31, 1805617.
[35] Xie, C., Niu, Z., Kim, D., Li, M., Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2019, 120, 1184-1249.
[36] Lim, H. K., Shin, H., Goddard III, W. A., Hwang, Y. J., Min, B. K., Kim, H. Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2. J. Am. Chem. Soc. 2014, 136, 11355-11361.
[37] Vasileff, A., Xu, C., Jiao, Y., Zheng, Y., Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809-1831.
[38] Nørskov, J. K., Bligaard, T., Logadottir, A., Kitchin, J., Chen, J. G., Pandelov, S., Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.
[39] Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F., Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073-4082.
[40] Calle‐Vallejo, F., Koper, M. Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu (100) Electrodes. Angew. Chem. Int. Ed. 2013, 125.
[41] Varela, A. S., Schlaup, C., Jovanov, Z. P., Malacrida, P., Horch, S., Stephens, I. E., Chorkendorff, I. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt (111) and Pt (211). J. Phys. Chem. C 2013, 117, 20500-20508.
[42] Ren, D., Ang, B. S. H., Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 2016, 6, 8239-8247.
[43] Back, S., Lim, J., Kim, N. Y., Kim, Y. H., Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 2017, 8, 1090-1096.
[44] Morales-Guio, C. G., Cave, E. R., Nitopi, S. A., Feaster, J. T., Wang, L., Kuhl, K. P., Jackson, A., Johnson, N. C., Abram, D. N., Hatsukade, T. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764-771.
[45] Lum, Y., Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 2018, 11, 2935-2944.
[46] Wang, J., Li, Z., Dong, C., Feng, Y., Yang, J., Liu, H., Du, X. Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 2019, 11, 2763-2767.
[47] Zhang, H., Chang, X., Chen, J. G., Goddard III, W. A., Xu, B., Cheng, M. J., Lu, Q. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 2019, 10, 3340.
[48] Gao, J., Ren, D., Guo, X., Zakeeruddin, S. M., Grätzel, M. Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. Faraday Discuss. 2019, 215, 282-296.
[49] Huang, J., Mensi, M., Oveisi, E., Mantella, V., Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490-2499.
[50] Medina-Ramos, J., Pupillo, R. C., Keane, T. P., DiMeglio, J. L., Rosenthal, J. Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts. J. Am. Chem. Soc. 2015, 137, 5021-5027.
[51] Medina-Ramos, J., DiMeglio, J. L., Rosenthal, J. Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials. J. Am. Chem. Soc. 2014, 136, 8361-8367.
[52] DiMeglio, J. L., Rosenthal, J. Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J. Am. Chem. Soc. 2013, 135, 8798-8801.
[53] Atifi, A., Boyce, D. W., DiMeglio, J. L., Rosenthal, J. Directing the outcome of CO2 reduction at bismuth cathodes using varied ionic liquid promoters. ACS Catal. 2018, 8, 2857-2863.
[54] Chu, M., Chen, C., Guo, W., Lu, L., Wu, Y., Wu, H., He, M., Han, B. Enhancing electroreduction of CO2 over Bi2WO6 nanosheets by oxygen vacancies. Green Chem. 2019, 21, 2589-2593.
[55] Duan, Y. X., Liu, K. H., Zhang, Q., Yan, J. M., Jiang, Q. Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods 2020, 4, 1900846.
[56] Deng, P., Wang, H., Qi, R., Zhu, J., Chen, S., Yang, F., Zhou, L., Qi, K., Liu, H., Xia, B. Y. Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2019, 10, 743-750.
[57] Patlolla, S. R., Katsu, K., Sharafian, A., Wei, K., Herrera, O. E., Mérida, W. A review of methane pyrolysis technologies for hydrogen production. Renew. Sustain. Energy Rev. 2023, 181, 113323.
[58] Chang, C. J., Hung, S. F., Hsu, C. S., Chen, H. C., Lin, S. C., Liao, Y. F., Chen, H. M. Quantitatively unraveling the redox shuttle of spontaneous oxidation/electroreduction of CuOx on silver nanowires using in situ X-ray absorption spectroscopy. ACS Cent. Sci. 2019, 5, 1998-2009.
[59] Wang, Y., Cheng, L., Zhu, Y., Liu, J., Xiao, C., Chen, R., Zhang, L., Li, Y., Li, C. Tunable selectivity on copper–bismuth bimetallic aerogels for electrochemical CO2 reduction. Appl. Catal. B 2022, 317, 121650.
[60] Gao, D., Yang, G., Li, J., Zhang, J., Zhang, J., Xue, D. Room-temperature ferromagnetism of flowerlike CuO nanostructures. J. Phys. Chem. C 2010, 114, 18347-18351.
[61] Yang, T., Bhalothia, D., Chang, H. W., Yan, C., Beniwal, A., Chang, Y. X., Wu, S. C., Chen, P. C., Wang, K. W., Dai, S. Oxygen vacancies endow atomic cobalt-palladium oxide clusters with outstanding oxygen reduction reaction activity. Chem. Eng. J. 2023, 454, 140289.
[62] Deng, S., Xiao, X., Xing, X., Wu, J., Wen, W., Wang, Y. Structure and catalytic activity of 3D macro/mesoporous Co3O4 for CO oxidation prepared by a facile self-sustained decomposition of metal–organic complexes. J. Mol. Catal. A: Chem. 2015, 398, 79-85.
[63] Zeng, M., Wang, X., Yang, Q., Chu, X., Chen, Z., Li, Z., Redshaw, C., Wang, C., Peng, Y., Wang, N. Activating Surface Lattice Oxygen of a Cu/Zn1–xCuxO Catalyst through Interface Interactions for CO Oxidation. ACS Appl. Mater. Interfaces 2022, 14, 9882-9890.
[64] Kao, B. H., Zeng, Y. F., Lee, Y. C., Pao, C. W., Chen, J. L., Chuang, Y. C., Sheu, H. S., Tsai, F. T., Liaw, W. F. Unveiled the Structure‐Selectivity Relationship for Carbon Dioxide Reduction Triggered by Bi‐Doped Cu‐Based Nanocatalysts. Small 2024, 20, 2307910.
[65] Zhuo, L. L., Chen, P., Zheng, K., Zhang, X. W., Wu, J. X., Lin, D. Y., Liu, S. Y., Wang, Z. S., Liu, J. Y., Zhou, D. D. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity. Angew. Chem. Int. Ed. 2022, 61, e202204967.
[66] Wang, P., Li, T., Wu, Q., Du, R., Zhang, Q., Huang, W. H., Chen, C. L., Fan, Y., Chen, H., Jia, Y. Molecular assembled electrocatalyst for highly selective CO2 fixation to C2+ products. ACS Nano 2022, 16, 17021-17032.
[67] Wei, D., Wang, Y., Dong, C. L., Thi Thuy Nga, T., Shi, Y., Wang, J., Zhao, X., Dong, F., Shen, S. Surface Adsorbed Hydroxyl: A Double‐Edged Sword in Electrochemical CO2 Reduction over Oxide‐Derived Copper. Angew. Chem. Int. Ed. 2023, 62, e202306876.
[68] Guo, P. P., He, Z. H., Yang, S. Y., Wang, W., Wang, K., Li, C. C., Wei, Y. Y., Liu, Z. T., Han, B. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chem. 2022, 24, 1527-1533.
[69] Nie, W., Heim, G. P., Watkins, N. B., Agapie, T., Peters, J. C. Organic Additive‐derived Films on Cu Electrodes Promote Electrochemical CO2 Reduction to C2+ Products Under Strongly Acidic Conditions. Angew. Chem. Int. Ed. 2023, 62, e202216102.
[70] Qiu, X. F., Zhu, H. L., Huang, J. R., Liao, P. Q., Chen, X. M. Highly selective CO2 electroreduction to C2H4 using a metal–organic framework with dual active sites. J. Am. Chem. Soc. 2021, 143, 7242-7246.
[71] Guan, A., Chen, Z., Quan, Y., Peng, C., Wang, Z., Sham, T. K., Yang, C., Ji, Y., Qian, L., Xu, X. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044-1053.
[72] Liu, Y. Y., Zhu, H. L., Zhao, Z. H., Huang, N. Y., Liao, P. Q., Chen, X. M. Insight into the Effect of the d-Orbital Energy of Copper Ions in Metal–Organic Frameworks on the Selectivity of Electroreduction of CO2 to CH4. ACS Catal. 2022, 12, 2749-2755.
[73] Yao, Y., Shi, T., Chen, W., Wu, J., Fan, Y., Liu, Y., Cao, L., Chen, Z. A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights. Nat. Commun. 2024, 15, 1257.
[74] Dubale, A. A., Zheng, Y., Wang, H., Hübner, R., Li, Y., Yang, J., Zhang, J., Sethi, N. K., He, L., Zheng, Z. High‐performance bismuth‐doped nickel aerogel electrocatalyst for the methanol oxidation reaction. Angew. Chem. Int. Ed. 2020, 59, 13891-13899.
[75] Eilert, A., Cavalca, F., Roberts, F. S., Osterwalder, J. r., Liu, C., Favaro, M., Crumlin, E. J., Ogasawara, H., Friebel, D., Pettersson, L. G. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 2017, 8, 285-290.
[76] He, M., Chang, X., Chao, T. H., Li, C., Goddard III, W. A., Cheng, M. J., Xu, B., Lu, Q. Selective enhancement of methane formation in electrochemical CO2 reduction enabled by a Raman-inactive oxygen-containing species on Cu. ACS Catal. 2022, 12, 6036-6046.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明