參考文獻 |
[1] Wang, G., Chen, J., Ding, Y., Cai, P., Yi, L., Li, Y., Tu, C., Hou, Y., Wen, Z., Dai, L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993-5061.
[2] Tan, X., Yu, C., Ren, Y., Cui, S., Li, W., Qiu, J. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ. Sci. 2021, 14, 765-780.
[3] Song, T., Liu, H., Liu, E., Wang, F., Cui, L., Zhang, X., Liu, T. Metal doping promotes the efficient electrochemical reduction of CO2 to CO in CuO nanosheets. Inorg. Chem. Commun. 2023, 155, 110976.
[4] Ren, W., Tan, X., Qu, J., Li, S., Li, J., Liu, X., Ringer, S. P., Cairney, J. M., Wang, K., Smith, S. C. Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion. Nat. Commun. 2021, 12, 1449.
[5] Bushuyev, O. S., De Luna, P., Dinh, C. T., Tao, L., Saur, G., van de Lagemaat, J., Kelley, S. O., Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825-832.
[6] Li, K., Peng, B., Peng, T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485-7527.
[7] Ahmad, T., Liu, S., Sajid, M., Li, K., Ali, M., Liu, L., Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.
[8] Lim, R. J., Xie, M., Sk, M. A., Lee, J. M., Fisher, A., Wang, X., Lim, K. H. A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal. Today 2014, 233, 169-180.
[9] Zou, Y., Wang, S. An investigation of active sites for electrochemical CO2 reduction reactions: from in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.
[10] Liu, A., Gao, M., Ren, X., Meng, F., Yang, Y., Gao, L., Yang, Q., Ma, T. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J. Mater. Chem. A 2020, 8, 3541-3562.
[11] Zhang, W., Hu, Y., Ma, L., Zhu, G., Wang, Y., Xue, X., Chen, R., Yang, S., Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.
[12] Schlögl, R. Heterogeneous catalysis. Angew. Chem. Int. Ed. 2015, 54, 3465-3520.
[13] Zhu, D. D., Liu, J. L., Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423-3452.
[14] Jones, J. P., Prakash, G. S., Olah, G. A. Electrochemical CO2 reduction: recent advances and current trends. Isr. J. Chem. 2014, 54, 1451-1466.
[15] Hori, Y., Wakebe, H., Tsukamoto, T., Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 1994, 39, 1833-1839.
[16] Roduner, E. Understanding catalysis. Chem. Soc. Rev. 2014, 43, 8226-8239.
[17] Grenoble, D., Estadt, M., Ollis, D. The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts. J. Catal. 1981, 67, 90-102.
[18] Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P., Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957-3971.
[19] Seh, Z. W., Kibsgaard, J., Dickens, C. F., Chorkendorff, I., Nørskov, J. K., Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[20] Mistry, H., Varela, A. S., Kühl, S., Strasser, P., Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 1-14.
[21] Wang, L., Chen, W., Zhang, D., Du, Y., Amal, R., Qiao, S., Wu, J., Yin, Z. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310-5349.
[22] Xia, Z., Guo, S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265-3278.
[23] Wang, Q., Lei, Y., Wang, D., Li, Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730-1750.
[24] Jia, Y., Jiang, K., Wang, H., Yao, X. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371-1397.
[25] Xie, C., Yan, D., Chen, W., Zou, Y., Chen, R., Zang, S., Wang, Y., Yao, X., Wang, S. Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater. Today 2019, 31, 47-68.
[26] Sun, K., Cheng, T., Wu, L., Hu, Y., Zhou, J., Maclennan, A., Jiang, Z., Gao, Y., Goddard III, W. A., Wang, Z. Ultrahigh mass activity for carbon dioxide reduction enabled by gold–iron core–shell nanoparticles. J. Am. Chem. Soc. 2017, 139, 15608-15611.
[27] Mistry, H., Choi, Y. W., Bagger, A., Scholten, F., Bonifacio, C. S., Sinev, I., Divins, N. J., Zegkinoglou, I., Jeon, H. S., Kisslinger, K. Enhanced carbon dioxide electroreduction to carbon monoxide over defect‐rich plasma‐activated silver catalysts. Angew. Chem. Int. Ed. 2017, 129, 11552-11556.
[28] Liu, Y., Zhang, Y., Cheng, K., Quan, X., Fan, X., Su, Y., Chen, S., Zhao, H., Zhang, Y., Yu, H. Selective electrochemical reduction of carbon dioxide to ethanol on a boron‐and nitrogen‐Co‐doped nanodiamond. Angew. Chem. Int. Ed. 2017, 129, 15813-15817.
[29] Wu, J., Ma, S., Sun, J., Gold, J. I., Tiwary, C., Kim, B., Zhu, L., Chopra, N., Odeh, I. N., Vajtai, R. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.
[30] Ren, D., Wong, N. T., Handoko, A. D., Huang, Y., Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 2016, 7, 20-24.
[31] Liu, C., Lourenço, M. P., Hedström, S., Cavalca, F., Diaz-Morales, O., Duarte, H. A., Nilsson, A., Pettersson, L. G. Stability and effects of subsurface oxygen in oxide-derived Cu catalyst for CO2 reduction. J. Phys. Chem. C 2017, 121, 25010-25017.
[32] Saravanan, K., Basdogan, Y., Dean, J., Keith, J. A. Computational investigation of CO2 electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis. J. Mater. Chem. A 2017, 5, 11756-11763.
[33] Gu, Z., Yang, N., Han, P., Kuang, M., Mei, B., Jiang, Z., Zhong, J., Li, L., Zheng, G. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 2019, 3, 1800449.
[34] Kim, C., Dionigi, F., Beermann, V., Wang, X., Möller, T., Strasser, P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31, 1805617.
[35] Xie, C., Niu, Z., Kim, D., Li, M., Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2019, 120, 1184-1249.
[36] Lim, H. K., Shin, H., Goddard III, W. A., Hwang, Y. J., Min, B. K., Kim, H. Embedding covalency into metal catalysts for efficient electrochemical conversion of CO2. J. Am. Chem. Soc. 2014, 136, 11355-11361.
[37] Vasileff, A., Xu, C., Jiao, Y., Zheng, Y., Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809-1831.
[38] Nørskov, J. K., Bligaard, T., Logadottir, A., Kitchin, J., Chen, J. G., Pandelov, S., Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.
[39] Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F., Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073-4082.
[40] Calle‐Vallejo, F., Koper, M. Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu (100) Electrodes. Angew. Chem. Int. Ed. 2013, 125.
[41] Varela, A. S., Schlaup, C., Jovanov, Z. P., Malacrida, P., Horch, S., Stephens, I. E., Chorkendorff, I. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt (111) and Pt (211). J. Phys. Chem. C 2013, 117, 20500-20508.
[42] Ren, D., Ang, B. S. H., Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 2016, 6, 8239-8247.
[43] Back, S., Lim, J., Kim, N. Y., Kim, Y. H., Jung, Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem. Sci. 2017, 8, 1090-1096.
[44] Morales-Guio, C. G., Cave, E. R., Nitopi, S. A., Feaster, J. T., Wang, L., Kuhl, K. P., Jackson, A., Johnson, N. C., Abram, D. N., Hatsukade, T. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764-771.
[45] Lum, Y., Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 2018, 11, 2935-2944.
[46] Wang, J., Li, Z., Dong, C., Feng, Y., Yang, J., Liu, H., Du, X. Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 2019, 11, 2763-2767.
[47] Zhang, H., Chang, X., Chen, J. G., Goddard III, W. A., Xu, B., Cheng, M. J., Lu, Q. Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. 2019, 10, 3340.
[48] Gao, J., Ren, D., Guo, X., Zakeeruddin, S. M., Grätzel, M. Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. Faraday Discuss. 2019, 215, 282-296.
[49] Huang, J., Mensi, M., Oveisi, E., Mantella, V., Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490-2499.
[50] Medina-Ramos, J., Pupillo, R. C., Keane, T. P., DiMeglio, J. L., Rosenthal, J. Efficient conversion of CO2 to CO using tin and other inexpensive and easily prepared post-transition metal catalysts. J. Am. Chem. Soc. 2015, 137, 5021-5027.
[51] Medina-Ramos, J., DiMeglio, J. L., Rosenthal, J. Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials. J. Am. Chem. Soc. 2014, 136, 8361-8367.
[52] DiMeglio, J. L., Rosenthal, J. Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J. Am. Chem. Soc. 2013, 135, 8798-8801.
[53] Atifi, A., Boyce, D. W., DiMeglio, J. L., Rosenthal, J. Directing the outcome of CO2 reduction at bismuth cathodes using varied ionic liquid promoters. ACS Catal. 2018, 8, 2857-2863.
[54] Chu, M., Chen, C., Guo, W., Lu, L., Wu, Y., Wu, H., He, M., Han, B. Enhancing electroreduction of CO2 over Bi2WO6 nanosheets by oxygen vacancies. Green Chem. 2019, 21, 2589-2593.
[55] Duan, Y. X., Liu, K. H., Zhang, Q., Yan, J. M., Jiang, Q. Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods 2020, 4, 1900846.
[56] Deng, P., Wang, H., Qi, R., Zhu, J., Chen, S., Yang, F., Zhou, L., Qi, K., Liu, H., Xia, B. Y. Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2019, 10, 743-750.
[57] Patlolla, S. R., Katsu, K., Sharafian, A., Wei, K., Herrera, O. E., Mérida, W. A review of methane pyrolysis technologies for hydrogen production. Renew. Sustain. Energy Rev. 2023, 181, 113323.
[58] Chang, C. J., Hung, S. F., Hsu, C. S., Chen, H. C., Lin, S. C., Liao, Y. F., Chen, H. M. Quantitatively unraveling the redox shuttle of spontaneous oxidation/electroreduction of CuOx on silver nanowires using in situ X-ray absorption spectroscopy. ACS Cent. Sci. 2019, 5, 1998-2009.
[59] Wang, Y., Cheng, L., Zhu, Y., Liu, J., Xiao, C., Chen, R., Zhang, L., Li, Y., Li, C. Tunable selectivity on copper–bismuth bimetallic aerogels for electrochemical CO2 reduction. Appl. Catal. B 2022, 317, 121650.
[60] Gao, D., Yang, G., Li, J., Zhang, J., Zhang, J., Xue, D. Room-temperature ferromagnetism of flowerlike CuO nanostructures. J. Phys. Chem. C 2010, 114, 18347-18351.
[61] Yang, T., Bhalothia, D., Chang, H. W., Yan, C., Beniwal, A., Chang, Y. X., Wu, S. C., Chen, P. C., Wang, K. W., Dai, S. Oxygen vacancies endow atomic cobalt-palladium oxide clusters with outstanding oxygen reduction reaction activity. Chem. Eng. J. 2023, 454, 140289.
[62] Deng, S., Xiao, X., Xing, X., Wu, J., Wen, W., Wang, Y. Structure and catalytic activity of 3D macro/mesoporous Co3O4 for CO oxidation prepared by a facile self-sustained decomposition of metal–organic complexes. J. Mol. Catal. A: Chem. 2015, 398, 79-85.
[63] Zeng, M., Wang, X., Yang, Q., Chu, X., Chen, Z., Li, Z., Redshaw, C., Wang, C., Peng, Y., Wang, N. Activating Surface Lattice Oxygen of a Cu/Zn1–xCuxO Catalyst through Interface Interactions for CO Oxidation. ACS Appl. Mater. Interfaces 2022, 14, 9882-9890.
[64] Kao, B. H., Zeng, Y. F., Lee, Y. C., Pao, C. W., Chen, J. L., Chuang, Y. C., Sheu, H. S., Tsai, F. T., Liaw, W. F. Unveiled the Structure‐Selectivity Relationship for Carbon Dioxide Reduction Triggered by Bi‐Doped Cu‐Based Nanocatalysts. Small 2024, 20, 2307910.
[65] Zhuo, L. L., Chen, P., Zheng, K., Zhang, X. W., Wu, J. X., Lin, D. Y., Liu, S. Y., Wang, Z. S., Liu, J. Y., Zhou, D. D. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity. Angew. Chem. Int. Ed. 2022, 61, e202204967.
[66] Wang, P., Li, T., Wu, Q., Du, R., Zhang, Q., Huang, W. H., Chen, C. L., Fan, Y., Chen, H., Jia, Y. Molecular assembled electrocatalyst for highly selective CO2 fixation to C2+ products. ACS Nano 2022, 16, 17021-17032.
[67] Wei, D., Wang, Y., Dong, C. L., Thi Thuy Nga, T., Shi, Y., Wang, J., Zhao, X., Dong, F., Shen, S. Surface Adsorbed Hydroxyl: A Double‐Edged Sword in Electrochemical CO2 Reduction over Oxide‐Derived Copper. Angew. Chem. Int. Ed. 2023, 62, e202306876.
[68] Guo, P. P., He, Z. H., Yang, S. Y., Wang, W., Wang, K., Li, C. C., Wei, Y. Y., Liu, Z. T., Han, B. Electrocatalytic CO2 reduction to ethylene over ZrO2/Cu-Cu2O catalysts in aqueous electrolytes. Green Chem. 2022, 24, 1527-1533.
[69] Nie, W., Heim, G. P., Watkins, N. B., Agapie, T., Peters, J. C. Organic Additive‐derived Films on Cu Electrodes Promote Electrochemical CO2 Reduction to C2+ Products Under Strongly Acidic Conditions. Angew. Chem. Int. Ed. 2023, 62, e202216102.
[70] Qiu, X. F., Zhu, H. L., Huang, J. R., Liao, P. Q., Chen, X. M. Highly selective CO2 electroreduction to C2H4 using a metal–organic framework with dual active sites. J. Am. Chem. Soc. 2021, 143, 7242-7246.
[71] Guan, A., Chen, Z., Quan, Y., Peng, C., Wang, Z., Sham, T. K., Yang, C., Ji, Y., Qian, L., Xu, X. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044-1053.
[72] Liu, Y. Y., Zhu, H. L., Zhao, Z. H., Huang, N. Y., Liao, P. Q., Chen, X. M. Insight into the Effect of the d-Orbital Energy of Copper Ions in Metal–Organic Frameworks on the Selectivity of Electroreduction of CO2 to CH4. ACS Catal. 2022, 12, 2749-2755.
[73] Yao, Y., Shi, T., Chen, W., Wu, J., Fan, Y., Liu, Y., Cao, L., Chen, Z. A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights. Nat. Commun. 2024, 15, 1257.
[74] Dubale, A. A., Zheng, Y., Wang, H., Hübner, R., Li, Y., Yang, J., Zhang, J., Sethi, N. K., He, L., Zheng, Z. High‐performance bismuth‐doped nickel aerogel electrocatalyst for the methanol oxidation reaction. Angew. Chem. Int. Ed. 2020, 59, 13891-13899.
[75] Eilert, A., Cavalca, F., Roberts, F. S., Osterwalder, J. r., Liu, C., Favaro, M., Crumlin, E. J., Ogasawara, H., Friebel, D., Pettersson, L. G. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 2017, 8, 285-290.
[76] He, M., Chang, X., Chao, T. H., Li, C., Goddard III, W. A., Cheng, M. J., Xu, B., Lu, Q. Selective enhancement of methane formation in electrochemical CO2 reduction enabled by a Raman-inactive oxygen-containing species on Cu. ACS Catal. 2022, 12, 6036-6046. |