參考文獻 |
[1] K. Kudo and T. Moriizumi, "Spectrum-controllable color sensors using organic dyes," Applied Physics Letters, vol. 39, no. 8, pp. 609-611, 1981, doi: 10.1063/1.92820.
[2] C. W. Tang, "Two‐layer organic photovoltaic cell," Applied physics letters, vol. 48, no. 2, pp. 183-185, 1986.
[3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene," Science, vol. 258, no. 5087, pp. 1474-1476, 1992.
[4] M. Hiramoto, K. Yoshimura, Y. Nakayama, S. Akita, T. Kawamura, and M. Yokoyama, "Photocurrent multiplication in amorphous silicon carbide films," Applied Physics Letters, vol. 59, no. 16, pp. 1992-1994, 1991, doi: 10.1063/1.106160.
[5] W. Wang, F. Zhang, L. Li, M. Gao, and B. Hu, "Improved Performance of Photomultiplication Polymer Photodetectors by Adjustment of P3HT Molecular Arrangement," ACS Appl Mater Interfaces, vol. 7, no. 40, pp. 22660-8, Oct 14 2015, doi: 10.1021/acsami.5b07522.
[6] J. Wang and Q. Zheng, "Enhancing the performance of photomultiplication-type organic photodetectors using solution-processed ZnO as an interfacial layer," Journal of Materials Chemistry C, vol. 7, no. 6, pp. 1544-1550, 2019, doi: 10.1039/c8tc04962a.
[7] D. Guo et al., "Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1 000 000," Mater Horiz, vol. 8, no. 8, pp. 2293-2302, Aug 1 2021, doi: 10.1039/d1mh00776a.
[8] W. Wang et al., "Effect of photogenerated carrier distribution on performance enhancement of photomultiplication organic photodetectors," Organic Electronics, vol. 68, pp. 56-62, 2019, doi: 10.1016/j.orgel.2019.01.055.
[9] J. M. Melancon and S. R. Živanović, "Broadband gain in poly(3-hexylthiophene):phenyl-C61-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer," Applied Physics Letters, vol. 105, no. 16, 2014, doi: 10.1063/1.4898000.
[10] L. Ma and Y. Yang, "Unique architecture and concept for high-performance organic transistors," Applied Physics Letters, vol. 85, no. 21, pp. 5084-5086, 2004, doi: 10.1063/1.1821629.
[11] A. J. Ben-Sasson et al., "Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates," Applied Physics Letters, vol. 95, no. 21, 2009, doi: 10.1063/1.3266855.
[12] G. Lee et al., "Vertical organic light-emitting transistor showing a high current on/off ratio through dielectric encapsulation for the effective charge pathway," Journal of Applied Physics, vol. 121, no. 2, 2017, doi: 10.1063/1.4974008.
[13] M. Greenman, G. Sheleg, C.-m. Keum, J. Zucker, B. Lussem, and N. Tessler, "Reaching saturation in patterned source vertical organic field effect transistors," Journal of Applied Physics, vol. 121, no. 20, 2017, doi: 10.1063/1.4984053.
[14] C. Zhang, H. You, Y. Hao, Z. Lin, and C. Zhu, "Effects of Optical Interference and Annealing on the Performance of Polymer/Fullerene Bulk Heterojunction Solar Cells," Edited by Leonid A. Kosyachenko, p. 1, 2011.
[15] N. Stutzmann, R. H. Friend, and H. Sirringhaus, "Self-aligned, vertical-channel, polymer field-effect transistors," Science, vol. 299, no. 5614, pp. 1881-1884, 2003.
[16] G. Sheleg, M. Greenman, B. Lussem, and N. Tessler, "Removing the current-limit of vertical organic field effect transistors," Journal of Applied Physics, vol. 122, no. 19, 2017.
[17] F. M. Sawatzki et al., "Balance of horizontal and vertical charge transport in organic field-effect transistors," Physical Review Applied, vol. 10, no. 3, p. 034069, 2018.
[18] X. Wu et al., "High-performance vertical field-effect organic photovoltaics," Nature Communications, vol. 14, no. 1, 2023, doi: 10.1038/s41467-023-37174-9.
[19] R. Deng et al., "High‐Performance Polymer Photodetector Using the Non‐Thermal‐and‐Non‐Ultraviolet–Ozone‐Treated SnO2 Interfacial Layer," physica status solidi (RRL) – Rapid Research Letters, vol. 14, no. 3, 2019, doi: 10.1002/pssr.201900531.
[20] H. Y. Chen, M. K. Lo, G. Yang, H. G. Monbouquette, and Y. Yang, "Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene," Nat Nanotechnol, vol. 3, no. 9, pp. 543-7, Sep 2008, doi: 10.1038/nnano.2008.206.
[21] Z. Zhao et al., "Highly stable photomultiplication-type organic photodetectors with single polymers containing intramolecular traps as the active layer," Journal of Materials Chemistry C, vol. 10, no. 20, pp. 7822-7830, 2022, doi: 10.1039/d2tc01297a.
[22] S. Yoon, G. S. Lee, K. M. Sim, M. J. Kim, Y. H. Kim, and D. S. Chung, "End‐Group Functionalization of Non‐Fullerene Acceptors for High External Quantum Efficiency over 150 000% in Photomultiplication Type Organic Photodetectors," Advanced Functional Materials, vol. 31, no. 1, 2020, doi: 10.1002/adfm.202006448.
[23] Y. Wang et al., "Fast and sensitive polymer photodetectors with extra high external quantum efficiency and large linear dynamic range at low working voltage bias," Organic Electronics, vol. 62, pp. 448-453, 2018, doi: 10.1016/j.orgel.2018.08.017.
[24] K. Yang et al., "Ultraviolet to near-infrared broadband organic photodetectors with photomultiplication," Organic Electronics, vol. 83, 2020, doi: 10.1016/j.orgel.2020.105739.
[25] M. Liu et al., "Highly sensitive, broad-band organic photomultiplication-type photodetectors covering UV-Vis-NIR," Journal of Materials Chemistry C, vol. 9, no. 19, pp. 6357-6364, 2021, doi: 10.1039/d1tc00555c.
[26] S. G. Han et al., "Photomultiplication‐Type Organic Photodetectors with Fast Response Enabled by the Controlled Charge Trapping Dynamics of Quantum Dot Interlayer," Advanced Functional Materials, vol. 31, no. 31, 2021, doi: 10.1002/adfm.202102087.
[27] Z. Zhao et al., "Photomultiplication Type Broad Response Organic Photodetectors with One Absorber Layer and One Multiplication Layer," J Phys Chem Lett, vol. 11, no. 2, pp. 366-373, Jan 16 2020, doi: 10.1021/acs.jpclett.9b03323.
[28] Y. S. Lau, Z. Lan, L. Cai, and F. Zhu, "High-performance solution-processed large-area transparent self-powered organic near-infrared photodetectors," Materials Today Energy, vol. 21, 2021, doi: 10.1016/j.mtener.2021.100708. |