博碩士論文 111329027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:18.217.237.169
姓名 王儷穎(Li-Ying Wang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 水熱合成析氧反應電催化觸媒及其在鹼性膜電解水中的應用
(Hydrothermal Synthesis of Oxygen Evolution Reaction Electrocatalysts and Its Application in Alkaline Membrane Water Electrolysis)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 應用於電催化析氧反應之高性能多金屬尖晶石 合成及其機理動力學模擬研究
★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用
★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討★ 高熵氧化物電極於類海水催化應用
★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用
★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究★ 廢棄印刷電路板粉塵回收:非金屬部分摻混至高分子再利用
★ 先進高熵電催化劑在水處理中的開發之氨分解和氫生產★ 高熵氧化物應用於鋰離子電池負極並探討最佳負極/正極配方
★ 高效環境友善製程回收鋰離子電池正極材料製備 析氧反應之催化劑★ 通過表面分析技術研究高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)鋰離子電池負極之失效機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 利用可再生能源電解水產氫是一種理想且環保的氫能獲取途徑。目前主要有三種低溫電解水產氫技術:鹼性電解水(Alkaline Water Electrolyzer, AWE)可使用非貴金屬觸媒,但反應效率較低、能耗較高;質子交換膜電解水(Proton Exchange Membrane Water Electrolyzer, PEMWE)反應快速、能耗低,但需使用昂貴的貴金屬觸媒;而陰離子交換膜電解水(Anion Exchange Membrane Water Electrolyzer, AEMWE)技術則被視為一種新興的有前景方向,它兼具AWE和PEMWE的優點,可在獲得高電流密度和低能耗的同時,使用廉價且儲量豐富的非貴金屬觸媒,有望大幅降低產氫成本,因此備受關注。
本文主要研究用於AEMWE所需的陽極觸媒,文獻報導過渡金屬鐵和鎳是具有良好催化性能的元素,為了增加催化活性或是穩定性,我們在製備過程中添加了鈷或錳,以水熱法在基板上製成FeNiCo或FeNiMn觸媒。經過參數的調控,成功製備出高效能的析氧反應電催化材料,並將其組裝成膜電極,進行性能測試。首先採用水熱合成法,成功製備出非貴金屬自支撐陽極觸媒電極。將所製備的FeNiCo/Ni mesh電化學測試,該觸媒僅需298 mV的過電位,反應出其一定的催化能力。隨後將此應用於AEMWE整體裝置的組裝。在200 mA/cm2的電流密度下,所需的電解電壓僅為1.69 V。經過200小時的長期測試,當工作電壓為2 V時,電流密度僅增加13 mA/cm2,展現了穩定性。後續也進行以鎳網基板作為陰極,搭配自製水熱合成的FeNiCo/Ni mesh陽極,組裝全非貴金屬的AEMWE。在工作電壓為2 V的條件下,該電流密度可達507 mA/cm2,顯示具備在電解水產氫領域中一定的應用潛力。
摘要(英) Utilizing renewable energy for water electrolysis to produce hydrogen is an ideal and environmentally friendly approach to obtain hydrogen energy. Currently, there are three main low-temperature water electrolysis technologies for hydrogen production: alkaline water electrolysis(AWE) can use non-precious metal catalysts, but has relatively low reaction efficiency and high energy consumption; proton exchange membrane water electrolysis(PEMWE) has fast reaction and low energy consumption, but requires expensive precious metal catalysts; while anion exchange membrane water electrolysis(AEMWE) is considered an emerging and promising direction, combining the advantages of AWE and PEMWE. It can achieve high current density and low energy consumption while using inexpensive and abundant non-precious metal catalysts, potentially significantly reducing the cost of hydrogen production, and thus receiving increasing attention.
This work mainly investigates the anode catalysts required for AEMWE. Previous literature reports that transition metals iron and nickel possess good catalytic performance, and to enhance the catalytic activity or stability, we added cobalt or manganese elements during the preparation process, and used a hydrothermal method to synthesize FeNiCo or FeNiMn catalysts on substrates. Through such tuning, highly efficient oxygen evolution reaction(OER) electrocatalytic materials were successfully prepared and assembled into membrane electrodes for performance testing of AEMWE.
First, a non-precious metal self-supported anode catalyst was successfully prepared using the hydrothermal synthesis method. When the prepared FeNiCo/Ni mesh anode catalyst was placed in 1 M KOH for OER electrochemical testing, it only required an overpotential of 298 mV, reflecting its certain OER catalytic ability. Subsequently, it was applied to the assembly of the overall AEMWE device. With the FeNiCo/Ni mesh as the anode and commercial Pt/CP as the cathode, at a current density of 200 mA/cm2, the required electrolysis voltage was only 1.69 V, and after 200 hours of long-term stability testing, when the operating voltage was 2 V, the current density only increased by 13 mA/cm2, demonstrating its stability. Additionally, an all-non-precious metal AEMWE was assembled using a nickel substrate as the cathode and the self-prepared hydrothermally synthesized FeNiCo/Ni mesh as the anode. Under an operating voltage of 2 V, the current density could reach 507 mA/cm2, showing potential for application in the field of water electrolysis for hydrogen production.
關鍵字(中) ★ 析氧反應
★ 水熱法
★ 膜電極製備
★ 陰離子交換膜水電解器
關鍵字(英) ★ oxygen evolution reaction
★ hydrothermal method
★ anion exchange membrane water electrolyzer
★ membrane electrode assembly
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 ESG指標 2
第二章 文獻回顧 3
2-1 水熱法製成催化觸媒研究概況 3
2-1-1 水熱法簡述 3
2-1-2 非金屬觸媒 4
2-1-3 過渡金屬觸媒 5
2-2 低溫水電解器技術概況 6
2-2-1 鹼性水電解槽(AWE) 7
2-2-2 質子交換膜水電解器(PEMWE) 8
2-2-3 陰離子交換膜水電解器(AEMWE) 10
2-3 AEMWE電解槽結構與膜電極系統 12
2-3-1 電解槽結構 12
2-3-2 膜電極製備方法 15
2-3-3 本文研究的方向 17
第三章 實驗方法 19
3-1 實驗架構與藥品 19
3-2 電極製備 21
3-3 膜電極製備 21
3-4 分析儀器 22
3-4-1 掃描式電子顯微鏡(FE-SEM) 22
3-4-2 感應耦合電漿光學發射光譜儀(ICP-OES) 22
3-4-3 X-ray繞射分析儀(XRD) 22
3-4-4 X-ray光電子光譜儀(XPS) 23
3-4-5 電化學量測系統(CHI) 23
第四章 結果與討論 24
4-1 水熱法合成三元觸媒 24
4-1-1 表面形貌分析 24
4-1-2 元素分析 26
4-1-3 電化學性能分析 30
4-2 AEMWE性能測試 32
4-2-1 電解液對AEMWE性能的影響 32
4-2-2 陽極觸媒對AEMWE性能的影響 34
4-2-3 陰極觸媒對AEMWE性能的影響 37
第五章 結論與未來工作 42
5-1 結論 42
5-2 未來工作 43
參考文獻 45
參考文獻 1. Li, F., et al., Bottom-up synthesis of 2D layered high-entropy transition metal hydroxides. Nanoscale Advances, 2022. 4(11): p. 2468-2478.
2. Shi, M., et al., Nanoflower-like high-entropy Ni–Fe–Cr–Mn–Co(oxy) hydroxides for oxygen evolution. Chemical Communications, 2023. 59(80): p. 11971-11974.
3. Rani, B.J., et al., Supercapacitor and OER activity of transition metal(Mo, Co, Cu) sulphides. Journal of Physics and Chemistry of Solids, 2020. 138: p. 109240.
4. Li, X., Q. Zha, and Y. Ni, Ni–Fe phosphate/Ni foam electrode: facile hydrothermal synthesis and ultralong oxygen evolution reaction durability. ACS sustainable chemistry & engineering, 2019. 7(22): p. 18332-18340.
5. Anantharaj, S., S. Kundu, and S. Noda, “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy, 2021. 80: p. 105514.
6. Suen, N.-T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.
7. Gong, M., et al., An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 2013. 135(23): p. 8452-8455.
8. Song, F. and X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature communications, 2014. 5(1): p. 4477.
9. Lu, Z., et al., Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical communications, 2014. 50(49): p. 6479-6482.
10. Zhou, D., et al., Activating basal plane in NiFe layered double hydroxide by Mn 2+ doping for efficient and durable oxygen evolution reaction. Nanoscale Horizons, 2018. 3(5): p. 532-537.
11. Smolinka, T., et al., The history of water electrolysis from its beginnings to the present, in Electrochemical power sources: fundamentals, systems, and applications. 2022, Elsevier. p. 83-164.
12. David, M., C. Ocampo-Martínez, and R. Sánchez-Peña, Advances in alkaline water electrolyzers: A review. Journal of Energy Storage, 2019. 23: p. 392-403.
13. Chatenet, M., et al., Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022. 51(11): p. 4583-4762.
14. Millet, P. and S. Grigoriev, Water electrolysis technologies. Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, 2013. 19.
15. Bowen, C., et al., Developments in advanced alkaline water electrolysis. International journal of hydrogen energy, 1984. 9(1-2): p. 59-66.
16. Zeng, K. and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 2010. 36(3): p. 307-326.
17. Brauns, J. and T. Turek, Alkaline water electrolysis powered by renewable energy: A review. Processes, 2020. 8(2): p. 248.
18. Zhang, B., et al., Advancing proton exchange membrane electrolyzers with molecular catalysts. Joule, 2020. 4(7): p. 1408-1444.
19. Wirkert, F.J., et al., A modular design approach for PEM electrolyser systems with homogeneous operation conditions and highly efficient heat management. International Journal of Hydrogen Energy, 2020. 45(2): p. 1226-1235.
20. Kang, Z., et al., Studying performance and kinetic differences between various anode electrodes in proton exchange membrane water electrolysis cell. Materials, 2022. 15(20): p. 7209.
21. Holzapfel, P., et al., Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis. Electrochemistry Communications, 2020. 110: p. 106640.
22. Carmo, M., et al., A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 2013. 38(12): p. 4901-4934.
23. Chen, Y., et al., Key components and design strategy for a proton exchange membrane water electrolyzer. Small Structures, 2023. 4(6): p. 2200130.
24. Bühre, L.V., et al., Adaptation of a PEMFC Reference Electrode to PEMWE: Possibilities and Limitations. Journal of The Electrochemical Society, 2023. 170(9): p. 094507.
25. Du, N., et al., Anion-exchange membrane water electrolyzers. Chemical reviews, 2022. 122(13): p. 11830-11895.
26. Xiao, L., et al., First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy & Environmental Science, 2012. 5(7): p. 7869-7871.
27. Yang, J., et al., Non-precious electrocatalysts for oxygen evolution reaction in anion exchange membrane water electrolysis: A mini review. Electrochemistry communications, 2021. 131: p. 107118.
28. Maier, M., et al., Mass transport in PEM water electrolysers: A review. International Journal of Hydrogen Energy, 2022. 47(1): p. 30-56.
29. Liu, H., et al., Effect of catalyst ink and formation process on the multiscale structure of catalyst layers in PEM fuel cells. Applied Sciences, 2022. 12(8): p. 3776.
30. Toudret, P., et al., Impact of the cathode layer printing process on the performance of MEA integrating PGM free catalyst. Catalysts, 2021. 11(6): p. 669.
31. Park, J., et al., Roll-to-roll production of catalyst coated membranes for low-temperature electrolyzers. Journal of Power Sources, 2020. 479: p. 228819.
32. Gomes Bezerra, C.A., L.J. Deiner, and G. Tremiliosi-Filho, Unexpected performance of inkjet‐printed membrane electrode assemblies for proton exchange membrane fuel cells. Advanced Engineering Materials, 2019. 21(11): p. 1900703.
33. Shahgaldi, S., I. Alaefour, and X. Li, Impact of manufacturing processes on proton exchange membrane fuel cell performance. Applied energy, 2018. 225: p. 1022-1032.
34. Wang, M., et al., Impact of microporous layer roughness on gas-diffusion-electrode-based polymer electrolyte membrane fuel cell performance. ACS Applied Energy Materials, 2019. 2(11): p. 7757-7761.
35. Ham, K., et al., Extensive active-site formation in trirutile CoSb2O6 by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Letters, 2021. 6(2): p. 364-370.
36. Yue, K., et al., In situ ion-exchange preparation and topological transformation of trimetal–organic frameworks for efficient electrocatalytic water oxidation. Energy & Environmental Science, 2021. 14(12): p. 6546-6553.
37. Chanda, D., et al., Optimization of synthesis of the nickel-cobalt oxide based anode electrocatalyst and of the related membrane-electrode assembly for alkaline water electrolysis. Journal of Power Sources, 2017. 347: p. 247-258.
38. Wen, Q., et al., Schottky heterojunction nanosheet array achieving high‐current‐density oxygen evolution for industrial water splitting electrolyzers. Advanced Energy Materials, 2021. 11(46): p. 2102353.
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明