摘要(英) |
This paper bases its research on the principles of wave optics and the VOHIL model proposed by Professor Ching-Cheng Sun. It derives an optical model for volume holographic optical elements, analyzing the corresponding diffraction light distribution under different parameters, including the refractive index of the recording medium material, material thickness, recording light source, and reading light source, all of which affect the spatial distribution of the diffraction light field.
Based on the scalar diffraction theory of wave optics and the VOHIL model, we establish an optical model for volume holographic elements. By using electromagnetic wave equations, we derive the distribution of the diffraction light field at the system’s output surface during the recording and reading processes of the holographic film.
The advantage of the model is in using the light field distribution of recording and reading light sources as the basis for calculation, significantly aiding the convenience of calculations for different light sources. This model simplifies computational complexity, compared to the analytic expression of the function. Moreover, the model considers factors influencing the diffraction light field. For volume holographic optical elements designed with diffraction wavelength, and distribution viewing angle, providing comprehensive image information. |
參考文獻 |
[1] S. Sinhasane, “Wearable Technology: The Coming Revolution in Digital Health,” https://mobisoftinfotech.com/resources/blog/wearable-technology-in-healthcare/.
[2] D. Lanman and D. Luebke, “Near-eye Light Field Displays,” ACM Trans. Graph. 32, 1-10 (2013).
[3] M. Speicher, B. D. Hall, and M. Nebeling, “What is mixed reality?,” presented at CHI conference on human factors in computing systems, New York, United States, 1-15 May 2019.
[4] G. Schmitt, “Virtual Reality, Augmented Reality, and Mixed Reality,” https://dribbble.com/shots/2858797-Virtual-Reality-Augmented-Reality-and-Mixed-Reality.
[5] D. Gabor and P. Sciences, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A 197(1051), 454-487 (1949).
[6] D. Gabor, “A new Microscopic principle”, Nature 161, 777-778 (1948).
[7] G. Evans, J. Miller, M. I. Pena, A. MacAllister, and E. Winer, “Evaluating the Microsoft HoloLens through an augmented reality assembly application,” SPIE 10197, 282-297 (2017).
[8] H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45,910-914 (2006).
[9] J. M. Cunningham, “Holography Optics, 3D Imaging & Laser Technology,” https://www.britannica.com/technology/holography/Pulsed-laser-holography.
[10] M. K. Kim “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).
[11] W. Klein, “Theoretical efficiency of Bragg devices,” IEEE 54(5), 803-804 (1966).
[12] M. B. Klein, “Photorefractive properties of BaTiO3,” in Photorefractive Materials and Their Applications I, P. Günter, J. P. Huignard, eds., 195-236, (Springer-Verlag, Berlin, 1988).
[13] B. R. David, Understanding diffraction in volume gratings and holograms. (InTech, 2013).
[14] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909-2947 (1969).
[15] Pochi Yeh, Introduction to Photorefractive Nonlinear Optics. (Wiley, New York,1993).
[16] A. Yariv and P. Yeh, Optical waves in crystals. (Wiley, New York, 1984).
[17] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42(5), 1184-1185 (2003).
[18] C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40(8), 1253-1260 (2001).
[19] H. Horimai, X. D. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44,2575-2579 (2005).
[20] H. Horimai and X. Tan, “Holographic versatile disc system,” Proc. of SPIE 5939,593901(2005).
[21] H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl.Opt. 45,910(2006).
[22] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電科學研究所博士論文,中華民國九十年。
[23] 余業緯,應用體積全像光學元件之布拉格窗於點對點成像之研究,國立中央大學光電所碩士論文,中華民國九十三年。
[24] 余業緯,同軸全項儲存系統之特性與改良及溫度補償,國立中央大學光電科學研究所博士論文,中華民國九十八年。
[25] 王語謙,光導式近眼顯示器之子畫面擷取技術,國立中央大學光電所碩士論文,中華民國一百一十二年。
[26] 謝茂杉,全像光學透鏡之色散像差分析,國立中央大學光電所碩士論文,預計於中華民國一百一十三年九月發表。 |