博碩士論文 111226067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.118.254.226
姓名 鄭賀元(He-Yuan Zheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 奈米壓印製作環形共振腔之研究
(Fabrication of Ring Resonators Using Nanoimprint Lithography)
相關論文
★ 電子束曝光製程氮化矽微環型共振腔之研究分析★ 以Groove-first 製程步驟製作U型槽與波導
★ 氮化矽微環形共振腔模擬與傳統紫外光製程之研究★ 微環形共振腔非線性效應與壓縮光之研究
★ 以可重構之SU-8聚合物披覆層對氮化矽微環形共振腔進行色散調製★ 利用傳統光學微影和i-line紫外光微影製作氮化矽微共振腔
★ 錐形波導設計對氮化矽微環形共振腔耦合效應研究★ 耦合共振腔光波導頻寬優化研究
★ 高功率脈衝磁控濺鍍氮化鎵環形共振腔製程之研究★ 以原子層沉積披覆層及飛秒雷射退火對氮化矽微環形共振腔進行表面改質研究
★ 低限制氮化矽波導之高品質因子微環形共振腔製程研究★ 氮化矽微環型干涉儀製程與穿透頻譜調製
★ 6 吋晶圓製程整合 奈米光學應用和均勻性分析研究★ 微環形共振腔耦合馬赫曾德爾干涉儀之研究
★ 雙重曝光氮化矽環形共振腔製作與熱效應調製★ 非對稱環形共振腔耦合與品質因子控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,光子集成電路(PICs)在光通信、生物和化學感測、微波合成器和非線性光子學等領域展現出巨大潛力。利用成熟的互補金屬氧化物半導體(CMOS)技術,PICs 提供了緊湊、集成和可以擴展的製造方法。波導共振腔在這些技術中起關鍵作用,提供感測、調制和濾波功能。早期,電子束微影(EBL)因其高解析度成為製造高品質共振腔的主要技術,但耗時且昂貴,不適合大規模製造。為了克服這一問題,接觸式、深紫外(DUV)和 I-line步進式微影被提出,雖然成本降低,但仍需無塵室設施,且解析度也因此受到影響。最近,奈米壓印微影(NIL)提供了一個簡單、低成本且高通量的製造方法。NIL利用精細模具壓印到基板上,製造了金屬透鏡、電子器件和等離子體組件。基於聚合物的波導共振腔的品質因子高達105,展示了大規模生產低損耗奈米元件的潛力。然而,先前的研究主要集中在聚
合物波導,少數研究探討了介電材料波導在 PIC 應用中的潛力,但未展現光學功能。在本篇論文中,我們使用NIL製造了具有高品質因子的Si3N4波導共振腔。本論文研究得出了一些新發現。首先,我們通過NIL在Si3N4薄膜上製造了品質因子高達1.5×105且消光比約為16 dB的高品質波導共振腔。相比於之前的低損耗Si3N4光子波導,波導共振腔顯示出實現集成光學功能(如調制器和濾波器)的潛力。其次,結合熱壓印和紫外(UV)奈米壓印技術來製造模具和壓印波導共振腔元件,提供了更好的壓印質量和NIL 製造靈活性。通過適當設計波導幾何結構,展示的脊形波導在正常色散範圍內提供約-35 ps/nm/km的低波導色散。最後,通過微加熱器展示了腔體共振的可調性。這項工作展示了NIL在PIC應用中的潛力。
摘要(英) In recent years, photonic integrated circuits (PICs) have shown significant potential
in fields such as optical communications, biological and chemical sensing, microwave
synthesizers, and nonlinear photonics. Leveraging mature complementary metal-oxide
semiconductor (CMOS) technology, PICs offer a compact, integrated, and scalable
manufacturing approach. Waveguide resonators play a crucial role in these technologies,
providing functionalities like sensing, modulation, and filtering.
Early on, electron beam lithography (EBL) was the primary technique for
manufacturing high-quality resonators due to its high resolution. However, it was time
consuming and expensive, making it unsuitable for large-scale production. To overcome
this, contact, deep ultraviolet (DUV), and I-line stepper lithography were introduced,
reducing costs but still requiring cleanroom facilities, which affected resolution.
More recently, nanoimprint lithography (NIL) has emerged as a simple, low-cost,
and high-throughput manufacturing method. NIL involves pressing fine molds onto
substrates to create components such as metal lenses, electronic devices, and plasmonic
structures. Polymer-based waveguide resonators have achieved quality factors as high as
105, demonstrating the potential for large-scale production of low-loss nanoscale devices.
However, previous research has predominantly focused on polymer waveguides,
with limited exploration of dielectric material waveguides in PIC applications without
demonstrating optical functionalities. In this paper, we used NIL to manufacture high
quality factor Si3N4 waveguide resonators. Our study has yielded several novel findings:
Firstly, using NIL, we fabricated Si3N4 waveguide resonators on thin films with
quality factors reaching up to 1.5×105 and extinction ratios approximately 16 dB.
Compared to previous low-loss Si3N4 photonics waveguides, these resonators show
potential for integrating optical functionalities such as modulators and filters.
iii
Secondly, by combining thermal imprinting and ultraviolet (UV) nanoimprint
technology for mold fabrication and imprinting waveguide resonator components, we
improved imprint quality and the flexibility of NIL manufacturing.
Thirdly, by designing appropriate waveguide geometries, ridge waveguides
demonstrated low waveguide dispersion of approximately -35 ps/nm/km within normal
dispersion ranges.
Lastly, we demonstrated tunability of cavity resonances through microheaters. This
work underscores the potential of NIL in PIC applications, highlighting advancements in
Si3N4 waveguide resonators and their integration into optical functionalities.
關鍵字(中) ★ 奈米壓印
★ 微環形共振腔
關鍵字(英)
論文目次 目錄
第1章 緒論 ............................................................................................................... 1
1-1 矽光子介紹 ............................................................... 1
1-2 微環形共振腔 ............................................................. 1
1-3 色散調製 ................................................................. 2
1-4 奈米壓印技術的發展 ....................................................... 3
1-4-1 熱奈米壓印微影(Thermal Nanoimprint Lithography, T-NIL) ................. 5
1-4-2 紫外光奈米壓印微影(UV Nanoimprint Lithography, UV-NIL) ................. 5
1-4-3 雷射輔助直接壓印(Laser assisted direct imprint, LADI)[14] .............. 6
1-4-4 軟微影技術(Soft Lithography) .......................................... 7
1-5 論文架構 ................................................................. 8
第2章 微環形共振腔之模擬與分析 ..................................................................... 10
2-1 模擬工具介紹與原理 ...................................................... 10
2-1-1 有限元素法(FEM)介紹與原理[16] ........................................ 10
2-1-2 RSoft FemSIM介紹[16] ................................................. 10
2-2 折射率跟材料的色散 ...................................................... 10
2-3 不同蝕刻深度下氮化矽厚度模擬 ............................................ 11
2-3-1 500nm氮化矽厚度 ...................................................... 11
2-3-2 700nm氮化矽厚度 ...................................................... 13
2-4 二氧化矽披覆層 .......................................................... 15
2-4-1 500nm氮化矽厚度 ...................................................... 15
2-4-2 700nm氮化矽厚度 ...................................................... 17
第3章 微環形共振腔製程 ..................................................................................... 20
vi

3-1 主模製作 ................................................................ 20
3-1-1 氮化矽主模 ........................................................... 20
3-1-2 矽主模 ............................................................... 21
3-2 軟模製作 ................................................................ 24
3-2-1 軟模製作流程 ......................................................... 24
3-3 氮化矽波導製作流程 ...................................................... 27
3-3-1 二氧化矽薄膜沉積 ..................................................... 27
3-3-2 氮化矽薄膜沉積 ....................................................... 29
3-3-3 紫外光奈米壓印 ....................................................... 30
3-3-4 披覆層沉積 ........................................................... 36
3-3-5 熱調製器製程 ......................................................... 37
第4章 微環形共振腔量測 ..................................................................................... 40
4-1 品質因子計算與理論 ...................................................... 40
4-2 品質因子量測系統 ........................................................ 43
4-3 品質因子之量測 .......................................................... 44
4-4 低限制波導 .............................................................. 49
4-5 共振腔色散計算與理論 .................................................... 51
4-6 色散量測系統 ............................................................ 54
4-7 色散量測與分析 .......................................................... 55
4-8 熱調製量測 .............................................................. 56
4-9 熱調製量測分析 .......................................................... 57
第5章 結論與未來展望 ......................................................................................... 60
參考文獻 ......................................................................................................................... 64
參考文獻 [1] B. Jalali and S. Fathpour, "Silicon photonics," Journal of lightwave technology, vol. 24, no. 12, pp. 4600-4615, 2006.
[2] D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, "Integrated microwave photonics," Laser & Photonics Reviews, vol. 7, no. 4, pp. 506-538, 2013.
[3] J. Leuthold, C. Koos, and W. Freude, "Nonlinear silicon photonics," Nature photonics, vol. 4, no. 8, pp. 535-544, 2010.
[4] Y. A. Vlasov, "Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G," IEEE Communications Magazine, vol. 50, no. 2, pp. s67-s72, 2012.
[5] P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," Journal of lightwave technology, vol. 20, no. 11, p. 1968, 2002.
[6] W. Jin et al., "Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators," Nature Photonics, vol. 15, no. 5, pp. 346-353, 2021.
[7] A. L. Gaeta, M. Lipson, and T. J. Kippenberg, "Photonic-chip-based frequency combs," nature photonics, vol. 13, no. 3, pp. 158-169, 2019.
[8] D. J. Wilson et al., "Integrated gallium phosphide nonlinear photonics," Nature Photonics, vol. 14, no. 1, pp. 57-62, 2020.
[9] B. S. Yilbas, A. Al-Sharafi, and H. Ali, Self-cleaning of surfaces and water droplet mobility. Elsevier, 2019.
[10] S. J. Bauman, Fabrication of sub-10 nm metallic structures via nanomasking technique for plasmonic enhancement applications. University of Arkansas, 2015.
[11] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 6, pp. 4129-4133, 1996.
[12] L. J. Guo, "Nanoimprint lithography: methods and material requirements," Advanced materials, vol. 19, no. 4, pp. 495-513, 2007.
[13] H. Lan and Y. Ding, Nanoimprint lithography. InTech Croatia, 2010.
[14] S. Y. Chou, C. Keimel, and J. Gu, "Ultrafast and direct imprint of nanostructures in silicon," Nature, vol. 417, no. 6891, pp. 835-837, 2002.
[15] W. Qiu, Y. M. Kang, and L. L. Goddard, "Quasicontinuous refractive index tailoring of SiNx and SiOxNy for broadband antireflective coatings," Applied Physics Letters, vol. 96, no. 14, 2010.
[16] https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-femsim.html. (accessed.
[17] P.-H. Wang, T.-H. Lee, and W.-H. Huang, "Fabrication of tapered waveguides by i-line UV lithography for flexible coupling control," Optics Express, vol. 31, no. 3, pp. 4281-4290, 2023.
[18] T. Nielsen et al., "Nanoimprint lithography in the cyclic olefin copolymer, Topas®, a highly ultraviolet-transparent and chemically resistant thermoplast," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 22, no. 4, pp. 1770-1775, 2004.
[19] A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, "Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization," Optics Communications, vol. 285, no. 7, pp. 1825-1833, 2012.
[20] B. Bilenberg et al., "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 23, no. 6, pp. 2944-2949, 2005.
[21] https://www.teo.com.tw/products?product_id=2475.
[22] D. Pérez, D. Domenech, P. Muñoz, and J. Capmany, "Electro-refraction modulation predictions for silicon graphene waveguides in the 1540–1560 nm region," IEEE Photonics Journal, vol. 8, no. 5, pp. 1-13, 2016.
[23] M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Applied physics letters, vol. 89, no. 7, 2006.
[24] S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Optics Express, vol. 15, no. 17, pp. 10553-10561, 2007.
[25] V. Menon, W. Tong, and S. Forrest, "Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier," IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1343-1345, 2004.
[26] S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Compact silicon microring resonators with ultra-low propagation loss in the C band," Optics express, vol. 15, no. 22, pp. 14467-14475, 2007.
[27] J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Optics letters, vol. 29, no. 24, pp. 2861-2863, 2004.
[28] https://www.fiberoptics4sale.com/blogs/wave-optics/phase-velocity-group-velocity-and-dispersion. (accessed.
[29] https://www.fiberoptics4sale.com/blogs/wave-optics/phase-velocity-group-velocity-and-dispersion.
指導教授 王培勳(Pei-Hsun Wang) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明