博碩士論文 108226051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:135 、訪客IP:3.142.119.222
姓名 江國凱(Kuo-Kai Chiang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於非準直光源的濃度偵測器之設計與研究
(Design and Research on Concentration Detector with a Non-collimated Light)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-22以後開放)
摘要(中) 傳統非光學式氣體檢測器容易受到其他氣體干擾,限制了其在特定應用中的效能。光學式氣體檢測器因其高靈敏度、快速響應和專一性等優勢,逐漸成為市場關注的焦點。然而,光學氣體檢測器的高成本限制了其普及應用。為了解決這些問題,本研究設計並研發了一種基於非準直光源的濃度偵測系統。將非準直光路設計整合到光學濃度偵測系統的架構中,旨在降低成本的同時,保持其高靈敏度、快速響應和專一性等優點。我們計劃使用可見光系統,以墨水溶液作為可行性的研究樣本,評估這種新型設計的可行性和性能。
本研究使用ASAP光追跡軟體建構系統和光源的模型並模擬光路,透過實驗量測不同濃度樣本的光穿透率。透過模擬、數學擬合與斜率分析等方式對系統的部分參數進行簡化,找出光強度與濃度的關係式,並了解系統的可工作區和限制。實驗結果表明,在10-35ppm濃度範圍內,系統能穩定測量樣本濃度,且與實際濃度的殘差小於1ppm。通過這些結果,我們證實了非準直光源應用於濃度偵測的可行性,並提出了為了應用於實際環境氣體的檢測需要做的改變,以及提升系統性能的建議。
摘要(英) Traditional non-optical gas detectors are often limited by their susceptibility to interference from other gases, affecting their performance in specific applications. Optical gas detectors, due to their high sensitivity, rapid response, and specificity, have gained attention in the market. However, their high costs have restricted widespread use. To address these issues, this study designs and develops a concentration detection system based on a non-collimated light source. By integrating a non-collimated optical path design into the architecture of the optical concentration detection system, we aim to reduce costs while maintaining high sensitivity and fast response. We plan to use a visible light system and ink solution as a feasibility study sample to evaluate the feasibility and performance of this new design.
We used ASAP ray-tracing software to model the system and the light source, simulating the optical path and measuring the light transmittance of samples with different concentrations. By simplifying system parameters through simulation, mathematical fitting, and slope analysis, we identified the relationship between light intensity and concentration, and explored the system′s working range and limitations. Experimental results show that the system can stably measure sample concentrations in the range of 10-35 ppm, with residuals less than 1 ppm from actual concentrations. These results confirm the feasibility of using non-collimated light sources for concentration detection, and we propose changes needed for real-world gas detection applications as well as suggestions for improving system performance.
關鍵字(中) ★ 濃度偵測器
★ 非準直光源
★ ASAP
★ 數學擬合
關鍵字(英) ★ concentration detector
★ non-collimated light
★ ASAP optical engineering software
★ mathematical fitting
論文目次 中文摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
1 第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧與探討 2
1.2.1 非光學式氣體偵測器 2
1.2.2 光學式氣體偵測器(Optical gas sensor) 4
1.3 論文架構 8
2 第二章 實驗原理 9
2.1 比爾–朗伯定律(Beer–Lambert law) 9
2.2 腔體中光強度的數學建模與化簡 12
2.2.1 波長項的簡化 12
2.2.2 光程項的簡化 13
3 第三章 系統架構與模擬流程 16
3.1 系統架構 16
3.2 樣本配置與藍墨水的吸收光譜量測 18
3.3 基於非準直光源的光路分布模擬流程與方法 23
3.3.1 切趾法建構光源模型及量測角度能量分布 26
3.3.2 樣本濃度與光強度的模擬資料點之擬合曲線 28
4 第四章 模擬與實驗結果分析 32
4.1 不同樣本濃度下穿透率的量測實驗結果 32
4.2 擬合分析與等效光程計算 33
4.3 系統性能評估與改進方向 36
5 第五章 結論與展望 42
參考文獻 44
參考文獻 [1] "臺灣歷次空氣污染物排放量清冊TEDS12.0." 行政院環境部空氣品質改善維護資訊網. https://air.moenv.gov.tw/EnvTopics/AirQuality_6.aspx (accessed.
[2] S. Dhall, B. R. Mehta, A. K. Tyagi, and K. Sood, "A review on environmental gas sensors: Materials and technologies," Sensors International, vol. 2, p. 100116, 01/01 2021, doi: https://doi.org/10.1016/j.sintl.2021.100116.
[3] H. Taube, H. Myers, and R. L. Rich, "Observations on the mechanism of electron transfer in Solution1," Journal of the American Chemical Society, vol. 75, no. 16, pp. 4118-4119, 1953.
[4] H. Taube, "Electron transfer between metal complexes: Retrospective," Science, vol. 226, no. 4678, pp. 1028-1036, 1984.
[5] R. Baron and J. Saffell, "Amperometric gas sensors as a low cost emerging technology platform for air quality monitoring applications: A review," ACS sensors, vol. 2, no. 11, pp. 1553-1566, 2017.
[6] A. C. Lewis et al., "Evaluating the performance of low cost chemical sensors for air pollution research," Faraday discussions, vol. 189, pp. 85-103, 2016.
[7] T. Liu, X. Wang, L. Li, and J. Yu, "electrochemical NOx gas sensors based on stabilized zirconia," Journal of The Electrochemical Society, vol. 164, no. 13, p. B610, 2017.
[8] L. Sun et al., "Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring," Sensors, vol. 16, no. 2, p. 211, 2016. [Online]. Available: https://www.mdpi.com/1424-8220/16/2/211.
[9] M. V. Nikolic, V. Milovanovic, Z. Z. Vasiljevic, and Z. Stamenkovic, "Semiconductor Gas Sensors: Materials, Technology, Design, and Application," Sensors, vol. 20, no. 22, p. 6694, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/22/6694.
[10] J. Dai et al., "Printed gas sensors," Chemical Society Reviews, vol. 49, no. 6, pp. 1756-1789, 2020.
[11] A. Mirzaei, B. Hashemi, and K. Janghorban, "α-Fe 2 O 3 based nanomaterials as gas sensors," Journal of Materials Science: Materials in Electronics, vol. 27, pp. 3109-3144, 2016.
[12] M. I. A. Asri, M. N. Hasan, M. R. A. Fuaad, Y. M. Yunos, and M. S. M. Ali, "MEMS gas sensors: A review," IEEE Sensors Journal, vol. 21, no. 17, pp. 18381-18397, 2021.
[13] 薛丁仁 and 蕭文澤, "半導體式晶片型氣體感測器研發," 台灣儀器科技研究中心, 專題, March, 2019.
[14] TechNews. https://technews.tw/2016/07/19/narlabs-gas-sensing-chip/ (accessed.
[15] L. Zhou, Y. He, Q. Zhang, and L. Zhang, "Carbon Dioxide Sensor Module Based on NDIR Technology," Micromachines, vol. 12, no. 7, p. 845, 2021. [Online]. Available: https://www.mdpi.com/2072-666X/12/7/845.
[16] M. Xu, B. Peng, X. Zhu, and Y. Guo, "Multi-gas detection system based on non-dispersive infrared (NDIR) spectral technology," Sensors, vol. 22, no. 3, p. 836, 2022.
[17] H. Wang, S. I. Vagin, B. Rieger, and A. Meldrum, "An Ultrasensitive Fluorescent Paper-Based CO2 Sensor," ACS Applied Materials & Interfaces, vol. 12, no. 18, pp. 20507-20513, 2020/05/06 2020, doi: 10.1021/acsami.0c03405.
[18] F. Yang et al., "Portable Smartphone Platform Based on a Single Dual-Emissive Ratiometric Fluorescent Probe for Visual Detection of Isopropanol in Exhaled Breath," Analytical Chemistry, vol. 93, no. 43, pp. 14506-14513, 2021/11/02 2021, doi: 10.1021/acs.analchem.1c03280.
[19] C.-Y. Liu et al., "Resolving Cross-Sensitivity Effect in Fluorescence Quenching for Simultaneously Sensing Oxygen and Ammonia Concentrations by an Optical Dual Gas Sensor," Sensors, vol. 21, no. 20, p. 6940, 2021. [Online]. Available: https://www.mdpi.com/1424-8220/21/20/6940.
[20] R. N. Dansby-Sparks et al., "Fluorescent-Dye-Doped Sol−Gel Sensor for Highly Sensitive Carbon Dioxide Gas Detection below Atmospheric Concentrations," Analytical Chemistry, vol. 82, no. 2, pp. 593-600, 2010/01/15 2010, doi: 10.1021/ac901890r.
[21] J. Coates, "Interpretation of infrared spectra, a practical approach," in Encyclopedia of Analytical Chemistry, R. A. Meyers Ed. Chichester: John Wiley & Sons Ltd, 2000, pp. 10815–10837.
[22] P. F. Bernath, Spectra of atoms and molecules. Oxford university press, 2020.
[23] L. Nasdala, D. Smith, R. Kaindl, and M. Ziemann, "Raman spectroscopy: Analytical perspectives in mineralogical research," vol. 12, 2004, pp. 281-343.
[24] D. Popa and F. Udrea, "Towards Integrated Mid-Infrared Gas Sensors," Sensors, vol. 19, no. 9, p. 2076, 2019.
[25] I. E. Gordon et al., "The HITRAN2016 molecular spectroscopic database," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 203, pp. 3-69, 12/01 2017, doi: https://doi.org/10.1016/j.jqsrt.2017.06.038.
[26] K. Thurmond, "Non-Dispersive Infrared (NDIR) Gas Sensor Utilizing Light-Emitting-Diodes Suitable for Applications Demanding Low-Power and Lightweight Instruments," 2016.
[27] Y. Chen, S. Zhang, and Q. Yao, "Research and Development of NDIR Sensor and Its Application In On-Line Detection of CF4 Gas," in Journal of Physics: Conference Series, 2020, vol. 1634, no. 1: IOP Publishing, p. 012109.
[28] M. Vafaei and A. Amini, "Chamberless NDIR CO2 sensor robust against environmental fluctuations," ACS sensors, vol. 6, no. 4, pp. 1536-1542, 2021.
[29] D. F. Swinehart, "The Beer-Lambert Law," Journal of Chemical Education, vol. 39, no. 7, p. 333, 1962/07/01 1962, doi: 10.1021/ed039p333.
[30] P. Bouguer, Essai d’optique sur la gradation de la lumière. Paris: Gauthier-Villars et Cie, 1729.
[31] A. Beer, "Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten," Annalen der Physik, vol. 162, no. 5, pp. 78-88, 1852.
[32] J. H. Lambert, Photometria sive de mensura et gradibus luminus, colorum et umbrae. 1760.
[33] W. E. Wentworth, "Dependence of the Beer-Lambert absorption law on monochromatic radiation: An experiment of spectrophotometry," Journal of Chemical Education, vol. 43, no. 5, p. 262, 1966/05/01 1966, doi: 10.1021/ed043p262.
[34] G. Peach, "Collisional Broadening of Spectral Lines," in Springer Handbook of Atomic, Molecular, and Optical Physics, G. W. F. Drake Ed. Cham: Springer International Publishing, 2023, pp. 927-939.
[35] C. Massie, G. Stewart, G. McGregor, and J. R. Gilchrist, "Design of a portable optical sensor for methane gas detection," Sensors and Actuators B: Chemical, vol. 113, no. 2, pp. 830-836, 2006/02/27/ 2006, doi: https://doi.org/10.1016/j.snb.2005.03.105.
[36] R. Kohandani and S. S. Saini, "Extracting optical absorption characteristics from semiconductor nanowire arrays," Nanotechnology, vol. 33, no. 39, p. 395204, 2022.
[37] THORLABS. https://www.thorlabs.com/thorproduct.cfm?partnumber=M660L4 (accessed.
[38] J. Hodgkinson and R. P. Tatam, "Optical gas sensing: a review," Measurement science and technology, vol. 24, no. 1, p. 012004, 2012.
[39] G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-μm wavelength region," Applied optics, vol. 12, no. 3, pp. 555-563, 1973.
[40] Z. Wu, F. Liu, Y. Jiao, C. Wang, X. Li, and Q. Zhang, "Optical Filter Selection for Photoacoustic Sensors of Multicomponent Gases: Considering Cross-Interference," IEEE Transactions on Instrumentation and Measurement, 2023.
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2024-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明