參考文獻 |
1. Jose, R. & Singh, V. Swarming in Bacteria: A Tale of Plasticity in Motility Behavior. J. Indian Inst. Sci 100, 515–524 (2020).
2. Kearns, D. B. A field guide to bacterial swarming motility. Nat. Rev. Microbiol 8, 9 (2019).
3. Benisty, S., Ben-Jacob, E., Ariel, G. & Be’er, A. Antibiotic-Induced Anoma- lous Statistics of Collective Bacterial Swarming. Phys. Rev. Lett. 114, 018105 (2015).
4. Be’er, A. et al. A phase diagram for bacterial swarming. Communication physics 3, 66 (2020).
5. Zhang, H. P., Be’er, A., Florin, E. L. & Swinney, H. L. Collective motion and density fluctuations in bacterial colonies. PNAS 107, 31 (2010).
6. Ilkanaiv, B., Kearns, D. B., Ariel, G. & Be’er, A. Effect of Cell Aspect Ratio on Swarming Bacteria. Phys. Rev. Lett. 118, 158002 (2017).
7. Ariel, G., Be’er, A. & Reynolds, A. Chaotic Model for Lévy Walks in Swarming Bacteria. Phys. Rev. Lett. 118, 228102 (2017).
8. Patteson, A. E., Gopinath, A. & Arratia, P. E. The propagation of active- passive interfaces in bacterial swarms. Nature Communications 9, 5373 (2018).
9. Sidortsov, M., Morgenstern, Y. & Be’er, A. Role of tumbling in bacterial swarming. Phys. Rev. E 96, 022407 (2017).
10. Li, H. et al. Data-driven quantitative modeling of bacterial active nematics.
PNAS 116, 3 (2018).
11. Copenhagen, K., Alert, R., Wingreen, N. S. & Shaevitz, J. W. Topologi- cal defects promote layer formation in Myxococcus xanthus colonies. Nat. Phys. 17, 211–215 (2021).
12. Filella, A., Nadal, F., Sire, C., Kanso, E. & Eloy, C. Model of Collec- tive Fish Behavior with Hydrodynamic Interactions. Phys. Rev. Lett. 120, 198101 (2018).
13. Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. PNAS 105, 4 (2008).
14. Parrish, J. & Edelstein-Keshet, L. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 5411 (1999).
15. Gullan, P. J. & Cranston, P. S. The Insects: An Outline of Entomology Third, 114–115 (Wiley-Blackwell, Hoboken, NJ, 2005).
16. Et al., B. S. Phase transition in the collective migration of tissue cells: Experiment and model. Phys. Rev. E 74, 061908 (2006).
17. Creppy, A., Praud, O., Druart, X., Kohnke, P. L. & Plouraboué, F. Tur- bulence of swarming sperm. Phys. Rev. E 92, 032722 (2015).
18. Liu, C. Y., Chen, H. Y. & I, L. Scale-free aggregation and interface fluctua- tions of cancer clusters in cancer-endothelial cell mixtures: From the dilute state to confluent monolayer. Phys. Rev. Research 3, L032050 (2021).
19. Kudrolli, A., Lumay, G., Volfson, D. & Tsimring, L. S. Swarming and Swirling in Self-Propelled Polar Granular Rods. Phys. Rev. Lett. 100, 058001 (2008).
20. Zheng, C. & Tönjes, R. Noise-induced swarming of active particles. PRE 106, 064601 (2022).
21. Abbaspour, L., Malek, A., Karpitschka, S. & Klumpp, S. Effects of di- rection reversals on patterns of active filaments. Phys. Rev. Research 5, 013171 (2023).
22. Jose, A., Ariel, G. & Be’er, A. Physical characteristics of mixed-species swarming colonies. Phys. Rev. E 105, 064404 (2022).
23. Peled, S. et al. Heterogeneous bacterial swarms with mixed lengths. Phys. Rev. E 103, 032413 (2021).
24. Young, K. D. The Selective Value of Bacterial Shape. Microbiol. Mol. Biol. Rev. 70, 660 (2006).
25. Campo, M. et al. A Constant Size Extension Drives Bacterial Cell Size Homeostasis. Cell 159 (2014).
26. Starling Murmurations https://www.richardjacksonsgarden.co.uk/ starling-murmurations/.
27. Why Do Bees Swarm? https://backyardbeekeeping.iamcountryside. com/health-pests/why-do-bees-swarm/.
28. BlueSwarm: Decentralized Robotic Fish Swarm Together https://arducam. medium.com/blueswarm-decentralized-robotic-fish-swarm-together- which-uses-arducam-multi-camera-adapter-and-787c450864e9.
29. Auer, G. K. et al. Bacterial Swarming Reduces Proteus mirabilis and Vib- rio parahaemolyticus Cell Stiffness and Increases -Lactam Susceptibility. mBio 10, 5 (2019).
30. Kawagishi, I., Imagawa, M., Imae, Y., McCarter, L. & Homma, M. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol 20, 4 (1996).
31. Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72 (2003).
32. Reilly, G. D., Reilly, C. A., Smith, E. G. & Baker-Austin, C. Vibrio alginolyticus-associated wound infection acquired in British waters. Euro Surveill 16, 42 (2011).
33. Atsumi, T. et al. Effect of Viscosity on Swimming by the Lateral and Polar Flagella of Vibrio alginolyticus. J. Bacteriol. 178, 16 (1996).
34. Cutler, K. J. et al. Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation. Nature Methods 19, 1438–1448 (2022).
35. Cortacero, K. et al. Evolutionary design of explainable algorithms for biomedical image segmentation. Nature Communications 14, 7112 (2023).
36. Smith, M. B. et al. Segmentation and tracking of cytoskeletal filaments using open active contours. Cytoskeleton (Hoboken) 67, 693–705 (2010).
37. Püspöki, Z., Storath, M., Sage, D. & Unser, M. in Advances in Anatomy,
Embryology and Cell Biology chap. 3 (Springer International Publishing,
2016) |