博碩士論文 110222027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.216.174.32
姓名 吳順吉(Shun-Ji Wu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 熱電材料(Ge0.86Sb0.08Bi0.06)Te的聲子交互作用
(Extended Brillouin zones from phonon cross-talks in thermoelectric (Ge0.86Sb0.08Bi0.06)Te)
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱電材料GeTe屬於P型半導體,是一種會因溫度改變而發生結構相變的材料,其在中溫區(300~600 K)至高溫區(> 600 K)的範圍中具有不錯的zT值,若摻雜Sb及Bi會使zT值(優質係數)變大,同時在(Ge0.86Sb0.08Bi0.06)Te這種Sb/Bi摻雜比例下,其在高溫區的zT值會大於2,是一個具有潛力的熱電材料之一。
在本研究中,將著重於探討(Ge0.86Sb0.08Bi0.06)Te此材料內的聲子動力行為,這是利用澳洲ANSTO的冷中子三軸散射儀(SIKA)進行的實驗研究。首先,會先利用SIKA進行此材料的中子彈性散射實驗,以判斷結構相的轉變溫度。之後,進行此材料於200 K、400 K、500 K、680 K及800 K的中子非彈性散射實驗,並繪製各溫度下的中子色散圖(即波向量-頻率關係圖或波向量-能量關係圖),以看此材料在各溫度內的聲子動力行為。
針對聲子動力行為的分析,是透過初始能量(Initial energy, E0)、能隙(Energy gap, Eg)、聲子諧振能量(Phonon harmonic energy, Eh0)、非諧振聲子-聲子散射能量(Anharmonic phonon-phonon scattering energy, Ep-p)、電子-聲子散射能量(Electron-phonon scattering energy, Ee-p)四個參數進行擬合分析,並藉由這四個參數與溫度的關係來獲得熱效應所引發聲子動力行為轉變的資訊。
摘要(英) The thermoelectric material GeTe is a P-type semiconductor that undergoes a structural phase transition when the temperature changes. It exhibits good zT values (a measure of thermoelectric quality) in the mid-temperature range (300~600 K) to high-temperature range (> 600 K). Doping with Sb and Bi enhances the zT value; for instance, in the (Ge0.86Sb0.08Bi0.06)Te material, the zT value exceeds 2 in the high-temperature range, making it a promising thermoelectric material.
In this study, we focus on the phonon dynamics within the (Ge0.86Sb0.08Bi0.06)Te material, utilizing the cold neutron triple-axis spectrometer (SIKA) at Australia′s ANSTO for experimental research. Initially, neutron elastic scattering experiments are conducted using SIKA to determine the phase transition temperatures of the material. Subsequently, neutron inelastic scattering experiments are performed at temperatures of 200 K, 400 K, 500 K, 680 K, and 800 K. Neutron dispersion diagrams (i.e., wave vector-frequency or wave vector-energy relationships) are plotted to observe the phonon dynamics at these temperatures.
The analysis of phonon dynamics involves fitting four parameters: background energy (E0), energy gap (E¬g), phonon harmonic energy (Eh0), anharmonic phonon-phonon scattering energy (Ep-p), and electron-phonon scattering energy (Ee-p). The relationship between these parameters and temperature provides insights into the phonon dynamic changes induced by thermal effects.
關鍵字(中) ★ 熱電材料
★ 聲子
★ 中子彈性散射
★ 中子非彈性散射
關鍵字(英) ★ Thermoelectric materials
★ Phonon
★ Neutron elastic scattering
★ Neutron inelastic scattering
論文目次 國立中央大學圖書館學位論文授權書...I
論文指導教授推薦書...II
論文口試委員審定書...III
摘要...i
ABSTRACT...ii
目錄...iii
圖目錄...v
表目錄...ix
符號說明...x
一、簡介...1
1-1 熱電裝置...1
1-2 熱電材料現況...5
二、熱電效應與聲子振動理論...8
2-1 GeTe熱電參數...8
2-1-1 晶體結構(Crystal structure)...8
2-1-2 電導率(Electrical conductivity)...9
2-1-3 熱傳導率(Thermal conductivity)...10
2-1-4 熱電動勢(Thermoelectric power)...12
2-1-5 優質係數(Figure of merit)...13
2-2 晶格振動...14
2-2-1 一維單原子鏈聲子振盪...14
2-2-2 一維雙原子鏈聲子振盪...16
三、樣品製備與儀器介紹...19
3-1 樣品製備(Sample Preparation)...19
3-2 中子散射(Neutron scattering)...21
3-2-1 彈性散射...21
3-2-2 非彈性散射...22
3-3 冷中子散射儀(SIKA, ANSTO)...23
四、(Ge0.86Sb0.08Bi0.06)Te 晶格結構...25
4-1 結構相轉變...25
五、(Ge0.86Sb0.08Bi0.06)Te 聲子動力行為...33
5-1 中溫區聲子動力行為...33
5-2 高溫區聲子動力行為...43
5-3 熱效應引發聲子動力行為轉變...46
六、結論...51
參考文獻...53
參考文獻 [1] Department of Economic and Social Affairs(UN). Sustainable Development Goals. 2015 [cited 2024 May 9]; Available from: https://sdgs.un.org/zh/goals.
[2] Seebeck, T.J., Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz. Annalen der Physik, 1826. 82(3): p. 253-286.
[3] Peltier, J.C.A., Nouvelles expériences sur la caloricité des courans électriques. 1834.
[4] Thomson, W., 4. On a Mechanical Theory of Thermo-Electric Currents. Proceedings of the Royal Society of Edinburgh, 1857. 3: p. 91-98.
[5] Apertet, Y. and C. Goupil, On the fundamental aspect of the first Kelvin′s relation in thermoelectricity. International Journal of Thermal Sciences, 2016. 104: p. 225-227.
[6] Rowe, D.M., Thermoelectrics handbook : macro to nano. 2006, Boca Raton: CRC/Taylor & Francis.
[7] Wood, C., Materials for thermoelectric energy conversion. Reports on progress in physics, 1988. 51(4): p. 459.
[8] Vaqueiro, P. and A.V. Powell, Recent developments in nanostructured materials for high-performance thermoelectrics. Journal of Materials Chemistry, 2010. 20(43): p. 9577-9584.
[9] Bell, L.E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008. 321(5895): p. 1457-1461.
[10] Snyder, G.J. and A.H. Snyder, Figure of merit ZT of a thermoelectric device defined from materials properties. Energy & Environmental Science, 2017. 10(11): p. 2280-2283.
[11] Shi, X.-L., J. Zou, and Z.-G. Chen, Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 2020. 120(15): p. 7399-7515.
[12] Guan, Q.-L., L.-Q. Dong, and Q. Hao, Improved Thermoelectric Performance of Sb2Te3 Nanosheets by Coating Pt Particles in Wide Medium-Temperature Zone. Materials, 2023. 16(21): p. 6961.
[13] Rull-Bravo, M., et al., Skutterudites as thermoelectric materials: revisited. Rsc Advances, 2015. 5(52): p. 41653-41667.
[14] Li, J., et al., Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule, 2018. 2(5): p. 976-987.
[15] Ranganayakulu, V.K., et al., Ultrahigh zT from strong electron–phonon interactions and a low-dimensional Fermi surface. Energy & Environmental Science, 2024. 17(5): p. 1904-1915.
[16] Biswas, K., et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489(7416): p. 414-418.
[17] Liu, W.-D., et al., High-Performance GeTe-Based Thermoelectrics: from Materials to Devices. Advanced Energy Materials, 2020. 10(19): p. 2000367.
[18] Lewis, J.E., Band Structure and Nature of Lattice Defects in GeTe from Analysis of Electrical Properties. physica status solidi (b), 1969. 35(2): p. 737-745.
[19] Lewis, J.E., The Defect Structure of Non-Stoichiometric Germanium Telluride from Magnetic Susceptibility Measurements. physica status solidi (b), 1970. 38(1): p. 131-140.
[20] Li, J., et al., Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying. Chemistry of Materials, 2017. 29(2): p. 605-611.
[21] Perumal, S., et al., Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring. Chemistry of Materials, 2017. 29(24): p. 10426-10435.
[22] Yadav, A., et al., An analytic study of the Wiedemann–Franz law and the thermoelectric figure of merit. Journal of Physics Communications, 2019. 3(10): p. 105001.
[23] Kittel, C., Kittel′s Introduction to Solid State Physics. 2018: Wiley.
[24] Tritt, T.M., Thermoelectric Phenomena, Materials, and Applications. Annual Review of Materials Research, 2011. 41(Volume 41, 2011): p. 433-448.
[25] Gibbs, Z.M., et al., Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Computational Materials, 2017. 3(1): p. 8.
[26] Suwardi, A., et al., Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation. Journal of Materials Chemistry A, 2019. 7(41): p. 23762-23769.
[27] CRONIN, B., THE THERMOELECTRIC LIMIT ZT~ 1: FACT OR ARTIFACT. 1992.
[28] Rowe, D.M., CRC Handbook of Thermoelectrics. 1995: CRC Press. P. 407-440.
[29] Chadwick, J., The existence of a neutron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1932. 136(830): p. 692-708.
[30] Shull, C.G. and E.O. Wollan, X-Ray, Electron, and Neutron Diffraction. Science, 1948. 108(2795): p. 69-75.
[31] Oura, K., et al., Surface Science: An Introduction. 2003: Springer Berlin Heidelberg. P. 47-48.
[32] 吳浚銘 and 張烈錚, 台灣首座冷中子三軸散射儀-SIKA. 科儀新知, 2015(204): p. 92-99.
[33] 矢野, 真., et al., Taiwanの冷中性子三軸分光器SIKA. 波紋, 2016. 26(4): p. 174-177.
[34] Hsu, K.F., et al., Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science, 2004. 303(5659): p. 818-821.
[35] 郭于嘉, 熱電材料Ge0.86Sb0.08Bi0.06Te在高溫Fm3 ̅m相的聲子色散關係, 國立中央大學: 桃園市, 碩士論文, 民國111年. p. 101.
[36] Ma, M.-H., et al., Extremely space- and time-limited phonon propagation from electron-lattice scattering induced by Sb/Bi codoping in Ge0.86Sb0.08Bi0.06Te single crystal. Physical Review Materials, 2021. 5(11): p. 114602.
指導教授 李文献(Wen-Hsien Li) 審核日期 2024-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明