參考文獻 |
[1] Department of Economic and Social Affairs(UN). Sustainable Development Goals. 2015 [cited 2024 May 9]; Available from: https://sdgs.un.org/zh/goals.
[2] Seebeck, T.J., Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz. Annalen der Physik, 1826. 82(3): p. 253-286.
[3] Peltier, J.C.A., Nouvelles expériences sur la caloricité des courans électriques. 1834.
[4] Thomson, W., 4. On a Mechanical Theory of Thermo-Electric Currents. Proceedings of the Royal Society of Edinburgh, 1857. 3: p. 91-98.
[5] Apertet, Y. and C. Goupil, On the fundamental aspect of the first Kelvin′s relation in thermoelectricity. International Journal of Thermal Sciences, 2016. 104: p. 225-227.
[6] Rowe, D.M., Thermoelectrics handbook : macro to nano. 2006, Boca Raton: CRC/Taylor & Francis.
[7] Wood, C., Materials for thermoelectric energy conversion. Reports on progress in physics, 1988. 51(4): p. 459.
[8] Vaqueiro, P. and A.V. Powell, Recent developments in nanostructured materials for high-performance thermoelectrics. Journal of Materials Chemistry, 2010. 20(43): p. 9577-9584.
[9] Bell, L.E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008. 321(5895): p. 1457-1461.
[10] Snyder, G.J. and A.H. Snyder, Figure of merit ZT of a thermoelectric device defined from materials properties. Energy & Environmental Science, 2017. 10(11): p. 2280-2283.
[11] Shi, X.-L., J. Zou, and Z.-G. Chen, Advanced Thermoelectric Design: From Materials and Structures to Devices. Chemical Reviews, 2020. 120(15): p. 7399-7515.
[12] Guan, Q.-L., L.-Q. Dong, and Q. Hao, Improved Thermoelectric Performance of Sb2Te3 Nanosheets by Coating Pt Particles in Wide Medium-Temperature Zone. Materials, 2023. 16(21): p. 6961.
[13] Rull-Bravo, M., et al., Skutterudites as thermoelectric materials: revisited. Rsc Advances, 2015. 5(52): p. 41653-41667.
[14] Li, J., et al., Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule, 2018. 2(5): p. 976-987.
[15] Ranganayakulu, V.K., et al., Ultrahigh zT from strong electron–phonon interactions and a low-dimensional Fermi surface. Energy & Environmental Science, 2024. 17(5): p. 1904-1915.
[16] Biswas, K., et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489(7416): p. 414-418.
[17] Liu, W.-D., et al., High-Performance GeTe-Based Thermoelectrics: from Materials to Devices. Advanced Energy Materials, 2020. 10(19): p. 2000367.
[18] Lewis, J.E., Band Structure and Nature of Lattice Defects in GeTe from Analysis of Electrical Properties. physica status solidi (b), 1969. 35(2): p. 737-745.
[19] Lewis, J.E., The Defect Structure of Non-Stoichiometric Germanium Telluride from Magnetic Susceptibility Measurements. physica status solidi (b), 1970. 38(1): p. 131-140.
[20] Li, J., et al., Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying. Chemistry of Materials, 2017. 29(2): p. 605-611.
[21] Perumal, S., et al., Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring. Chemistry of Materials, 2017. 29(24): p. 10426-10435.
[22] Yadav, A., et al., An analytic study of the Wiedemann–Franz law and the thermoelectric figure of merit. Journal of Physics Communications, 2019. 3(10): p. 105001.
[23] Kittel, C., Kittel′s Introduction to Solid State Physics. 2018: Wiley.
[24] Tritt, T.M., Thermoelectric Phenomena, Materials, and Applications. Annual Review of Materials Research, 2011. 41(Volume 41, 2011): p. 433-448.
[25] Gibbs, Z.M., et al., Effective mass and Fermi surface complexity factor from ab initio band structure calculations. npj Computational Materials, 2017. 3(1): p. 8.
[26] Suwardi, A., et al., Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation. Journal of Materials Chemistry A, 2019. 7(41): p. 23762-23769.
[27] CRONIN, B., THE THERMOELECTRIC LIMIT ZT~ 1: FACT OR ARTIFACT. 1992.
[28] Rowe, D.M., CRC Handbook of Thermoelectrics. 1995: CRC Press. P. 407-440.
[29] Chadwick, J., The existence of a neutron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1932. 136(830): p. 692-708.
[30] Shull, C.G. and E.O. Wollan, X-Ray, Electron, and Neutron Diffraction. Science, 1948. 108(2795): p. 69-75.
[31] Oura, K., et al., Surface Science: An Introduction. 2003: Springer Berlin Heidelberg. P. 47-48.
[32] 吳浚銘 and 張烈錚, 台灣首座冷中子三軸散射儀-SIKA. 科儀新知, 2015(204): p. 92-99.
[33] 矢野, 真., et al., Taiwanの冷中性子三軸分光器SIKA. 波紋, 2016. 26(4): p. 174-177.
[34] Hsu, K.F., et al., Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science, 2004. 303(5659): p. 818-821.
[35] 郭于嘉, 熱電材料Ge0.86Sb0.08Bi0.06Te在高溫Fm3 ̅m相的聲子色散關係, 國立中央大學: 桃園市, 碩士論文, 民國111年. p. 101.
[36] Ma, M.-H., et al., Extremely space- and time-limited phonon propagation from electron-lattice scattering induced by Sb/Bi codoping in Ge0.86Sb0.08Bi0.06Te single crystal. Physical Review Materials, 2021. 5(11): p. 114602. |