參考文獻 |
1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science,
2004. 306(5696): p. 666-669.
2. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National
Academy of Sciences, 2005. 102(30): p. 10451-10453.
3. Pop, E., V. Varshney, and A.K. Roy, Thermal properties of graphene: Fundamentals
and applications. MRS bulletin, 2012. 37(12): p. 1273-1281.
4. Malekpour, H. and A.A. Balandin, Raman‐based technique for measuring thermal
conductivity of graphene and related materials. Journal of Raman Spectroscopy, 2018.
49(1): p. 106-120.
5. Chaves, A., et al., Bandgap engineering of two-dimensional semiconductor materials.
npj 2D Materials and Applications, 2020. 4(1): p. 29.
6. Novoselov, K.S., et al., 2D materials and van der Waals heterostructures. Science,
2016. 353(6298): p. aac9439.
7. Pumera, M., Z. Sofer, and A. Ambrosi, Layered transition metal dichalcogenides for
electrochemical energy generation and storage. Journal of Materials Chemistry A,
2014. 2(24): p. 8981-8987.
8. Castellanos-Gomez, A., Black phosphorus: narrow gap, wide applications. The journal
of physical chemistry letters, 2015. 6(21): p. 4280-4291.
9. Deng, B., et al., Efficient electrical control of thin-film black phosphorus bandgap.
Nature communications, 2017. 8(1): p. 14474.
10. Niu, T. and A. Li, From two-dimensional materials to heterostructures. Progress in
Surface Science, 2015. 90(1): p. 21-45.
11. Lin, L., et al., Building graphene p–n junctions for next-generation photodetection.
Nano Today, 2015. 10(6): p. 701-716.
12. Pereira, J.M., et al., Klein tunneling in single and multiple barriers in graphene.
Semiconductor science and technology, 2010. 25(3): p. 033002.
13. Recher, P. and B. Trauzettel, Quantum dots and spin qubits in graphene.
Nanotechnology, 2010. 21(30): p. 302001.
14. Shytov, A., N. Gu, and L. Levitov, Transport in graphene pn junctions in magnetic
field. arXiv preprint arXiv:0708.3081, 2007.
15. Wang, G., et al., Seamless lateral graphene p–n junctions formed by selective in situ
doping for high-performance photodetectors. Nature Communications, 2018. 9(1): p.
5168.
16. Shifa, T.A., et al., Heterostructures based on 2D materials: a versatile platform for
efficient catalysis. Advanced Materials, 2019. 31(45): p. 1804828.
17. Velický, M. and P.S. Toth, From two-dimensional materials to their heterostructures:
An electrochemist′s perspective. Applied Materials Today, 2017. 8: p. 68-103.
18. Badami, D., X-Ray studies of graphite formed by decomposing silicon carbide. Carbon,
1965. 3(1): p. 53-57.
19. Berger, C., et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route
toward graphene-based nanoelectronics. The Journal of Physical Chemistry B, 2004.
108(52): p. 19912-19916.
20. Iacopi, F., J.J. Boeckl, and C. Jagadish, 2D Materials. Vol. 95. 2016: Academic Press.
21. Laursen, A.B., et al., Molybdenum sulfides—efficient and viable materials for electro-
and photoelectrocatalytic hydrogen evolution. Energy & Environmental Science, 2012.
5(2): p. 5577-5591.
22. Rahman, A., et al., Molybdenum disulfide-based nanomaterials for visible-light-induced
photocatalysis. ACS omega, 2022. 7(26): p. 22089-22110.
23. Merki, D. and X. Hu, Recent developments of molybdenum and tungsten sulfides as
hydrogen evolution catalysts. Energy & Environmental Science, 2011. 4(10): p. 3878-
3888.
24. Wang, J., et al., Miracle in “White”: Hexagonal Boron Nitride. Small, 2024: p.
2400489.
25. Acun, A., et al., Germanene: the germanium analogue of graphene. Journal of physics:
Condensed matter, 2015. 27(44): p. 443002.
26. Dávila, M., et al., Germanene: a novel two-dimensional germanium allotrope akin to
graphene and silicene. New Journal of Physics, 2014. 16(9): p. 095002.
27. Liu, H., J. Gao, and J. Zhao, Silicene on substrates: a way to preserve or tune its
electronic properties. The Journal of Physical Chemistry C, 2013. 117(20): p. 10353-
10359.
28. Kuang, P., et al., MXene-based photocatalysts. Journal of Materials Science &
Technology, 2020. 56: p. 18-44.
29. Zhan, X., et al., MXene and MXene-based composites: synthesis, properties and
environment-related applications. Nanoscale Horizons, 2020. 5(2): p. 235-258.
30. Guo, X., M. Baumgarten, and K. Müllen, Designing π-conjugated polymers for organic
electronics. Progress in Polymer Science, 2013. 38(12): p. 1832-1908.
31. Yano, S., et al., Amorphous 2D materials containing a conjugated-polymer network.
Communications Chemistry, 2019. 2(1): p. 97.
32. Dutta, T., et al., Electronic properties of 2D materials and their junctions. Nano
Materials Science, 2024. 6(1): p. 1-23.
33. Frisenda, R., et al., Atomically thin p–n junctions based on two-dimensional materials.
Chemical Society Reviews, 2018. 47(9): p. 3339-3358.
34. Allain, P.E. and J.-N. Fuchs, Klein tunneling in graphene: optics with massless
electrons. The European Physical Journal B, 2011. 83: p. 301-317.
35. Stander, N., B. Huard, and D. Goldhaber-Gordon, Evidence for Klein tunneling in
graphene p− n junctions. Physical review letters, 2009. 102(2): p. 026807.
36. Milovanović, S., D. Moldovan, and F. Peeters, Veselago lensing in graphene with a pn
junction: Classical versus quantum effects. Journal of Applied Physics, 2015. 118(15).
37. Reijnders, K. and M. Katsnelson, Diffraction catastrophes and semiclassical quantum
mechanics for Veselago lensing in graphene. Physical Review B, 2017. 96(4): p.
045305.
38. Kaushik, N., et al., Schottky barrier heights for Au and Pd contacts to MoS2. Applied
Physics Letters, 2014. 105(11).
39. Li, Y., et al., Interface effects of Schottky devices built from MoS2 and high work
function metals. Journal of Physics: Condensed Matter, 2022. 34(16): p. 165001.
40. Lv, L., et al., Design and tailoring of two-dimensional Schottky, PN and tunnelling
junctions for electronics and optoelectronics. Nanoscale, 2021. 13(14): p. 6713-6751.
41. Wu, J.-Y., et al., Electrical rectifying and photosensing property of Schottky diode based
on MoS2. ACS applied materials & interfaces, 2018. 10(29): p. 24613-24619.
42. You, J., et al., Contacting MoS2 to MXene: vanishing p-type Schottky barrier and
enhanced hydrogen evolution catalysis. The Journal of Physical Chemistry C, 2019.
123(6): p. 3719-3726.
43. Chen, D.-R., et al., Lateral two-dimensional material heterojunction photodetectors
with ultrahigh speed and detectivity. ACS applied materials & interfaces, 2019. 11(6):
p. 6384-6388.
44. Kitai, A., Principles of Solar Cells, LEDs and Diodes: The role of the PN junction.
2011: John Wiley & Sons.
45. Shockley, W., The Theory of p‐n Junctions in Semiconductors and p‐n Junction
Transistors. Bell system technical journal, 1949. 28(3): p. 435-489.
46. Ilatikhameneh, H., et al., Dramatic impact of dimensionality on the electrostatics of PN
junctions and its sensing and switching applications. IEEE Transactions on
Nanotechnology, 2018. 17(2): p. 293-298.
47. Nipane, A., et al., Electrostatics of lateral pn junctions in atomically thin materials.
Journal of Applied Physics, 2017. 122(19).
48. Zheng, C., et al., Direct observation of 2D electrostatics and ohmic contacts in template-
grown graphene/WS2 heterostructures. ACS nano, 2017. 11(3): p. 2785-2793.
49. Yu, H., A. Kutana, and B.I. Yakobson, Carrier delocalization in two-dimensional
coplanar p–n junctions of graphene and metal dichalcogenides. Nano letters, 2016.
16(8): p. 5032-5036.
50. Kang, J., et al., Graphene transfer: key for applications. Nanoscale, 2012. 4(18): p.
5527-5537.
51. Chen, Y.-S., et al., Mediator-assisted synthesis of WS2 with ultrahigh-optoelectronic
performance at multi-wafer scale. npj 2D Materials and Applications, 2022. 6(1): p. 54.
52. Bard, A.J., L.R. Faulkner, and H.S. White, Electrochemical methods: fundamentals and
applications. 2022: John Wiley & Sons.
53. Instruments, G., Application Notes: Potentiostat Primer.
54. Kissinger, P. and W.R. Heineman, Laboratory Techniques in Electroanalytical
Chemistry, revised and expanded. 2018: CRC press.
55. Muthu, J., et al., The HER performance of 2D materials is underestimated without
morphology correction. Chemical Engineering Journal, 2023. 465: p. 142852.
56. Dresselhaus, M., A. Jorio, and R. Saito, Characterizing graphene, graphite, and carbon
nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys., 2010. 1(1): p.
89-108.
57. Andrade, J.D., X-ray photoelectron spectroscopy (XPS). Surface and Interfacial Aspects
of Biomedical Polymers: Volume 1 Surface Chemistry and Physics, 1985: p. 105-195.
58. Fadley, C.S., X-ray photoelectron spectroscopy: Progress and perspectives. Journal of
Electron Spectroscopy and Related Phenomena, 2010. 178: p. 2-32.
59. Smidstrup, S., et al., QuantumATK: An integrated platform of electronic and atomic-
scale modelling tools. Journal of Physics: Condensed Matter, 2019. 32(1): p. 015901.
60. Liu, Y., et al., Dielectrophoretic assembly of nanowires. The Journal of Physical
Chemistry B, 2006. 110(29): p. 14098-14106.
61. Ranjan, N., et al., Dielectrophoretic growth of metallic nanowires and microwires:
theory and experiments. Langmuir, 2010. 26(1): p. 552-559.
62. Vijayaraghavan, A., et al., Dielectrophoretic assembly of high-density arrays of
individual graphene devices for rapid screening. ACS nano, 2009. 3(7): p. 1729-1734.
63. Piner, R.D., et al., " Dip-pen" nanolithography. science, 1999. 283(5402): p. 661-663.
64. Memming, R., Semiconductor electrochemistry. 2015: John Wiley & Sons.
65. Achoyan, A.S., et al., Two-dimensional pn junction under equilibrium conditions.
Semiconductors, 2002. 36: p. 903-907.
66. Kim, Y.D., et al., Focused-laser-enabled p–n junctions in graphene field-effect
transistors. ACS nano, 2013. 7(7): p. 5850-5857.
67. Liu, N., et al., Large-area, transparent, and flexible infrared photodetector fabricated
using PN junctions formed by N-doping chemical vapor deposition grown graphene.
Nano letters, 2014. 14(7): p. 3702-3708.
68. Beenakker, C., Colloquium: Andreev reflection and Klein tunneling in graphene.
Reviews of Modern Physics, 2008. 80(4): p. 1337.
69. Cai, L., et al., Whispering gallery mode optical microresonators: structures and sensing
applications. physica status solidi (a), 2020. 217(6): p. 1900825.
70. Ryynänen, J., Graphene Transistors-Challenges and Opportunities. 2015.
71. Guo, B., et al., Graphene doping: a review. Insciences J., 2011. 1(2): p. 80-89.
72. Zhang, Y., et al., Lateral Graphene p–n Junctions Realized by Nanoscale Bipolar
Doping Using Surface Electric Dipoles and Self‐Organized Molecular Anions.
Advanced Materials Interfaces, 2019. 6(1): p. 1801380.
73. Zhou, X., et al., Atomic-scale characterization of graphene p–n junctions for electron-
optical applications. ACS nano, 2019. 13(2): p. 2558-2566.
74. Willke, P., et al., Doping of graphene by low-energy ion beam implantation: structural,
electronic, and transport properties. Nano letters, 2015. 15(8): p. 5110-5115.
75. Wu, X., et al., Doping of graphene using ion beam irradiation and the atomic
mechanism. Computational Materials Science, 2017. 129: p. 184-193.
76. Chen, T.-W., Y.-P. Hsieh, and M. Hofmann, Ad-layers enhance graphene′s
performance. RSC advances, 2015. 5(114): p. 93684-93688.
77. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper
foils. science, 2009. 324(5932): p. 1312-1314.
78. Deng, S. and V. Berry, Wrinkled, rippled and crumpled graphene: an overview of
formation mechanism, electronic properties, and applications. Materials Today, 2016.
19(4): p. 197-212.
79. Meng, L., et al., Hierarchy of graphene wrinkles induced by thermal strain engineering.
Applied Physics Letters, 2013. 103(25).
80. Wang, W., S. Yang, and A. Wang, Observation of the unexpected morphology of
graphene wrinkle on copper substrate. Scientific reports, 2017. 7(1): p. 8244.
81. Boukhvalov, D., et al., Charge transfer and weak bonding between molecular oxygen
and graphene zigzag edges at low temperatures. Carbon, 2016. 107: p. 800-810.
82. Hofmann, M., et al., Dopant morphology as the factor limiting graphene conductivity.
Scientific Reports, 2015. 5(1): p. 17393.
83. Das, A., et al., Monitoring dopants by Raman scattering in an electrochemically top-
gated graphene transistor. Nature nanotechnology, 2008. 3(4): p. 210-215.
84. Penner, R.M., Electrodeposition of nanostructures and microstructures on highly
oriented pyrolytic graphite (HOPG), in Handbook of Electrochemistry. 2007, Elsevier.
p. 661-677.
85. Schmickler, W. and E. Santos, Interfacial electrochemistry. 2010: Springer Science &
Business Media.
86. Penner, R.M., Mesoscopic metal particles and wires by electrodeposition. 2002, ACS
Publications. p. 3339-3353.
87. Tennant, D.M., Limits of conventional lithography, in Nanotechnology. 1999, Springer
New York New York, NY. p. 161-205.
88. Euler, J. and W. Nonnenmacher, Stromverteilung in porösen elektroden. Electrochimica
Acta, 1960. 2(4): p. 268-286.
89. Chang, K.-W., et al., Electrostatic control over the electrochemical reactivity of
graphene. Chemistry of Materials, 2018. 30(20): p. 7178-7182.
90. Zalka, D. and L. Péter, On the evolution and application of the concept of
electrochemical polarization. Journal of Solid State Electrochemistry, 2020. 24(11): p.
2595-2602.
91. Hirt, L., et al., Local surface modification via confined electrochemical deposition with
FluidFM. RSC advances, 2015. 5(103): p. 84517-84522.
92. Kock, M., V. Kirchner, and R. Schuster, Electrochemical micromachining with
ultrashort voltage pulses–a versatile method with lithographical precision.
Electrochimica acta, 2003. 48(20-22): p. 3213-3219.
93. Haynes, C.L., A.D. McFarland, and R.P. Van Duyne, Surface-enhanced Raman
spectroscopy. 2005, ACS Publications.
94. Ling, X., et al., Can graphene be used as a substrate for Raman enhancement? Nano
letters, 2010. 10(2): p. 553-561.
95. Wang, Y., et al., Gold on graphene as a substrate for surface enhanced Raman
scattering study. Applied Physics Letters, 2010. 97(16).
96. Sutrová, V., et al., Excitation wavelength dependence of combined surface-and
graphene-enhanced Raman scattering experienced by free-base phthalocyanine
localized on single-layer graphene-covered Ag nanoparticle arrays. The Journal of
Physical Chemistry C, 2018. 122(36): p. 20850-20860.
97. Yang, W., et al., Graphene-Ag nanoparticles-cicada wings hybrid system for obvious
SERS performance and DNA molecular detection. Optics express, 2019. 27(3): p. 3000-
3013.
98. Tzeng, Y., et al., Silver nanoparticles SERS sensors using rapid thermal CVD nanoscale
graphene islands as templates. IEEE Transactions on Nanotechnology, 2019. 19: p. 25-
33.
99. Aparicio-Martinez, E., I.A. Estrada-Moreno, and R.B. Dominguez, Evaluation of a
Laser Reduced Graphene Electrode Modified with Electrodeposited Silver
Nanoparticles for SERS Detection. ECS Transactions, 2021. 101(1): p. 3.
100. Rout, C.S., et al., Au nanoparticles on graphitic petal arrays for surface-enhanced
Raman spectroscopy. Applied Physics Letters, 2010. 97(13): p. 133108.
101. Du, Y., et al., Enhanced light–matter interaction of graphene–gold nanoparticle hybrid
films for high-performance SERS detection. Journal of Materials Chemistry C, 2014.
2(23): p. 4683-4691.
102. Ayhan, M.E., CVD graphene-based flexible and transparent SERS substrate towards
L-tyrosine detection. Microelectronic Engineering, 2021. 241: p. 111546.
103. Sun, H., H. Liu, and Y. Wu, A green, reusable SERS film with high sensitivity for in-
situ detection of thiram in apple juice. Applied Surface Science, 2017. 416: p. 704-709.
104. Widrow, B., Adaptive" adaline" Neuron Using Chemical" memistors.". 1960.
105. Borovkov, V., et al., Electrochemical Transducers. 1966, Moscow: Nauka.
106. Yao, P., et al., Fully hardware-implemented memristor convolutional neural network.
Nature, 2020. 577(7792): p. 641-646.
107. Pakkenberg, B., et al., Aging and the human neocortex. Experimental gerontology,
2003. 38(1-2): p. 95-99.
108. Ramos-Nuñez, A.I., et al., Static and dynamic measures of human brain connectivity
predict complementary aspects of human cognitive performance. Frontiers in human
neuroscience, 2017. 11: p. 420.
109. Omotade, O.F., S.L. Pollitt, and J.Q. Zheng, Actin-based growth cone motility and
guidance. Molecular and Cellular Neuroscience, 2017. 84: p. 4-10.
110. Slesazeck, S. and T. Mikolajick, Nanoscale resistive switching memory devices: a
review. Nanotechnology, 2019. 30(35): p. 352003.
111. Dresselhaus, M.S. and I. Thomas, Alternative energy technologies. Nature, 2001.
414(6861): p. 332-337.
112. Bureau of Energy, M.T., Energy Statistics Handbook. 2022.
113. Lewis, N.S. and D.G. Nocera, Powering the planet: Chemical challenges in solar
energy utilization. Proceedings of the National Academy of Sciences, 2006. 103(43): p.
15729-15735.
114. Crabtree, G.W., M.S. Dresselhaus, and M.V. Buchanan, The hydrogen economy.
Physics today, 2004. 57(12): p. 39-44.
115. Züttel, A., et al., Hydrogen: the future energy carrier. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1923):
p. 3329-3342.
116. Walter, M.G., et al., Solar water splitting cells. Chemical reviews, 2010. 110(11): p.
6446-6473.
117. Gomez, R., et al., Hydrogen evolution on platinum single crystal surfaces: effects of
irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on
platinum (100). The Journal of Physical Chemistry, 1993. 97(18): p. 4769-4776.
118. Nørskov, J.K., et al., Trends in the exchange current for hydrogen evolution. Journal of
The Electrochemical Society, 2005. 152(3): p. J23.
119. Huang, X., et al., Solution-phase epitaxial growth of noble metal nanostructures on
dispersible single-layer molybdenum disulfide nanosheets. Nature communications,
2013. 4(1): p. 1444.
120. Wang, T., et al., Enhanced electrocatalytic activity for hydrogen evolution reaction from
self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode.
Energy & Environmental Science, 2013. 6(2): p. 625-633.
121. Kong, D., et al., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano
letters, 2013. 13(3): p. 1341-1347.
122. Li, G., et al., All the catalytic active sites of MoS2 for hydrogen evolution. Journal of
the American Chemical Society, 2016. 138(51): p. 16632-16638.
123. Li, H., et al., Activating and optimizing MoS2 basal planes for hydrogen evolution
through the formation of strained sulphur vacancies. Nature materials, 2016. 15(1): p.
48-53.
124. Ouyang, Y., et al., Activating inert basal planes of MoS2 for hydrogen evolution
reaction through the formation of different intrinsic defects. Chemistry of Materials,
2016. 28(12): p. 4390-4396.
125. Shen, P.-C., et al., Healing of donor defect states in monolayer molybdenum disulfide
using oxygen-incorporated chemical vapour deposition. Nature Electronics, 2022. 5(1):
p. 28-36.
126. Xu, J., et al., Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen
evolution. Nature communications, 2022. 13(1): p. 2193.
127. Ye, G., et al., Defects engineered monolayer MoS2 for improved hydrogen evolution
reaction. Nano letters, 2016. 16(2): p. 1097-1103.
128. Chen, D.-R., et al., Edge-dominated hydrogen evolution reactions in ultra-narrow MoS
2 nanoribbon arrays. Journal of Materials Chemistry A, 2023. 11(29): p. 15802-15810.
129. Huang, T.-X., et al., Probing the edge-related properties of atomically thin MoS2 at
nanoscale. Nature communications, 2019. 10(1): p. 5544.
130. Jaramillo, T.F., et al., Identification of active edge sites for electrochemical H2 evolution
from MoS2 nanocatalysts. science, 2007. 317(5834): p. 100-102.
131. Wu, K., et al., Creating edge sites within the basal plane of a MoS2 catalyst for
substantially enhanced hydrodeoxygenation activity. ACS Catalysis, 2021. 12(1): p. 8-
17.
132. Luo, P., et al., Doping engineering and functionalization of two-dimensional metal
chalcogenides. Nanoscale Horizons, 2019. 4(1): p. 26-51.
133. Pető, J., et al., Spontaneous doping of the basal plane of MoS2 single layers through
oxygen substitution under ambient conditions. Nature chemistry, 2018. 10(12): p. 1246-
1251.
134. Shi, W. and Z. Wang, Effect of oxygen doping on the hydrogen evolution reaction in
MoS2 monolayer. Journal of the Taiwan Institute of Chemical Engineers, 2018. 82: p.
163-168.
135. Tang, J., et al., In situ oxygen doping of monolayer MoS2 for novel electronics. Small,
2020. 16(42): p. 2004276.
136. Van Der Zande, A.M., et al., Grains and grain boundaries in highly crystalline
monolayer molybdenum disulphide. Nature materials, 2013. 12(6): p. 554-561.
137. Chang, Y.-H., et al., Highly efficient electrocatalytic hydrogen production by MoSx
grown on graphene-protected 3D Ni foams. Advanced materials, 2013. 25(5): p. 756-
760.
138. Li, Y., et al., MoS2 nanoparticles grown on graphene: an advanced catalyst for the
hydrogen evolution reaction. Journal of the American Chemical Society, 2011. 133(19):
p. 7296-7299.
139. Rao, R., et al., Spectroscopic evaluation of charge-transfer doping and strain in
graphene/MoS 2 heterostructures. Physical Review B, 2019. 99(19): p. 195401.
140. Wang, N., et al., Effect of Functional Group Modifications on the Photocatalytic
Performance of g‐C3N4. Small, 2023. 19(27): p. 2300109.
141. Chen, S., et al., Revealing the grain boundary formation mechanism and kinetics during
polycrystalline MoS2 growth. ACS applied materials & interfaces, 2019. 11(49): p.
46090-46100.
142. Jiang, R., et al., Grain Boundary—A Route to Enhance Electrocatalytic Activity for
Hydrogen Evolution Reaction. Applied Sciences, 2022. 12(9): p. 4290.
143. Wang, S., et al., Origin of the Enhanced Hydrogen Evolution Reaction Activity of Grain
Boundaries in MoS2 Monolayers. The Journal of Physical Chemistry C, 2022. 126(14):
p. 6215-6222.
144. He, Y., et al., Engineering grain boundaries at the 2D limit for the hydrogen evolution
reaction. Nature communications, 2020. 11(1): p. 57.
145. Huang, P.Y., et al., Grains and grain boundaries in single-layer graphene atomic
patchwork quilts. Nature, 2011. 469(7330): p. 389-392.
146. Li, Q., et al., Grain boundary structures and electronic properties of hexagonal boron
nitride on Cu (111). Nano letters, 2015. 15(9): p. 5804-5810.
147. Ly, T.H., et al., Misorientation-angle-dependent electrical transport across
molybdenum disulfide grain boundaries. Nature communications, 2016. 7(1): p. 10426.
148. Huang, Y.L., et al., Bandgap tunability at single-layer molybdenum disulphide grain
boundaries. Nature communications, 2015. 6(1): p. 6298.
149. Voiry, D., et al., Conducting MoS2 nanosheets as catalysts for hydrogen evolution
reaction. Nano letters, 2013. 13(12): p. 6222-6227.
150. Wu, C., et al., A critical review on enhancement of photocatalytic hydrogen production
by molybdenum disulfide: from growth to interfacial activities. Small, 2019. 15(35): p.
1900578.
151. Liang, Z., et al., A review on 2D MoS2 cocatalysts in photocatalytic H2 production.
Journal of Materials Science & Technology, 2020. 56: p. 89-121.
152. Li, Z., X. Meng, and Z. Zhang, Recent development on MoS2-based photocatalysis: A
review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018.
35: p. 39-55.
153. Jiang, L., et al., Engineering isolated S vacancies over 2D MoS2 basal planes for
catalytic hydrogen evolution. ACS applied nano materials, 2022. 5(3): p. 3521-3530.
154. Liang, Q., et al., Defect engineering of two-dimensional transition-metal
dichalcogenides: applications, challenges, and opportunities. ACS nano, 2021. 15(2):
p. 2165-2181.
155. Kang, S., et al., Defect-engineered MoS 2 with extended photoluminescence lifetime for
high-performance hydrogen evolution. Journal of Materials Chemistry C, 2019. 7(33):
p. 10173-10178.
156. Zhang, H., et al., Surface modulation of hierarchical MoS2 nanosheets by Ni single
atoms for enhanced electrocatalytic hydrogen evolution. Advanced Functional
Materials, 2018. 28(51): p. 1807086.
157. Li, L. and E.A. Carter, Defect-mediated charge-carrier trapping and nonradiative
recombination in WSe2 monolayers. Journal of the American Chemical Society, 2019.
141(26): p. 10451-10461.
158. Karvonen, L., et al., Rapid visualization of grain boundaries in monolayer MoS2 by
multiphoton microscopy. Nature communications, 2017. 8(1): p. 15714.
159. Lunardon, M., et al., Catalytic Activity of Defect-Engineered Transition Me tal
Dichalcogenides Mapped with Atomic-Scale Precision by Electrochemical Scanning
Tunneling Microscopy. ACS Energy Letters, 2023. 8(2): p. 972-980.
160. Takahashi, Y., et al., High‐Resolution Electrochemical Mapping of the Hydrogen
Evolution Reaction on Transition‐Metal Dichalcogenide Nanosheets. Angewandte
Chemie International Edition, 2020. 59(9): p. 3601-3608.
161. Rong, Y., et al., Controlled preferential oxidation of grain boundaries in monolayer
tungsten disulfide for direct optical imaging. ACS nano, 2015. 9(4): p. 3695-3703.
162. Cao, Y., Roadmap and direction toward high-performance MoS2 hydrogen evolution
catalysts. ACS nano, 2021. 15(7): p. 11014-11039.
163. Sharma, L., et al., Hydrogen evolution at the in situ MoO3/MoS2 heterojunctions
created by nonthermal O2 plasma treatment. ACS Applied Energy Materials, 2020.
3(6): p. 5333-5342.
164. Jeong, H.Y., et al., Visualizing point defects in transition-metal dichalcogenides using
optical microscopy. Acs Nano, 2016. 10(1): p. 770-777.
165. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 years of
image analysis. Nature methods, 2012. 9(7): p. 671-675.
166. Lim, C.S., et al., Impact electrochemistry of layered transition metal dichalcogenides.
Acs Nano, 2015. 9(8): p. 8474-8483.
167. Qorbani, M., et al., Atomistic insights into highly active reconstructed edges of
monolayer 2H-WSe2 photocatalyst. Nature communications, 2022. 13(1): p. 1256.
168. Gupta, S., A. Johnston, and S. Khondaker, Correlated KPFM and TERS imaging to
elucidate defect-induced inhomogeneities in oxygen plasma treated 2D MoS2
nanosheets. Journal of Applied Physics, 2022. 131(16).
169. Ko, T.Y., et al., On-stack two-dimensional conversion of MoS2 into MoO3. 2D
Materials, 2016. 4(1): p. 014003.
170. Chow, W.L., et al., Evolution of Raman scattering and electronic structure of ultrathin
molybdenum disulfide by oxygen chemisorption. Advanced Electronic Materials, 2015.
1(1-2): p. 1400037.
171. Enyashin, A.N., et al., Line defects in molybdenum disulfide layers. The Journal of
Physical Chemistry C, 2013. 117(20): p. 10842-10848.
172. Seo, B., et al., Monolayer-precision synthesis of molybdenum sulfide nanoparticles and
their nanoscale size effects in the hydrogen evolution reaction. ACS nano, 2015. 9(4):
p. 3728-3739.
173. Exner, K.S., On the optimum binding energy for the hydrogen evolution reaction: How
do experiments contribute? Electrochemical Science Advances, 2022. 2(4): p.
e2100101.
174. Park, S., et al., Spectroscopic visualization of grain boundaries of monolayer
molybdenum disulfide by stacking bilayers. ACS nano, 2015. 9(11): p. 11042-11048.
175. Shi, J., et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its
potential application in hydrogen evolution reaction. ACS nano, 2014. 8(10): p. 10196-
10204.
176. Castellanos-Gomez, A., et al., Local strain engineering in atomically thin MoS2. Nano
letters, 2013. 13(11): p. 5361-5366.
177. Ge, J., et al., Oxygen atoms substituting sulfur atoms of MoS2 to activate the basal plane
and induce the phase transition for boosting hydrogen evolution. Materials Today
Energy, 2021. 22: p. 100854.
178. Kudo, A., Photocatalyst materials for water splitting. Catalysis Surveys from Asia,
2003. 7: p. 31-38.
179. Lavini, F., et al., Friction and work function oscillatory behavior for an even and odd
number of layers in polycrystalline MoS 2. Nanoscale, 2018. 10(17): p. 8304-8312.
180. Moore, D., et al., Uncovering topographically hidden features in 2D MoSe2 with
correlated potential and optical nanoprobes. npj 2D Materials and Applications, 2020.
4(1): p. 44.
181. Precner, M., et al., Evolution of metastable defects and its effect on the electronic
properties of MoS2 films. Scientific reports, 2018. 8(1): p. 6724.
182. Ly, T.H., et al., Observing grain boundaries in CVD-grown monolayer transition metal
dichalcogenides. ACS nano, 2014. 8(11): p. 11401-11408.
183. Hsiao, F.-H., et al., Using exciton/trion dynamics to spatially monitor the catalytic
activities of MoS2 during the hydrogen evolution reaction. ACS nano, 2022. 16(3): p.
4298-4307. |