參考文獻 |
[1] Kerson Huang. Statistical Mechanics. 2nd ed. John Wiley & Sons, 1987.
[2] C. Jarzynski. “Equilibrium free-energy differences from nonequilibrium
measurements: A master-equation approach”. In: Phys. Rev. E 56 (5 1997),
pp. 5018–5035. DOI: 10.1103/PhysRevE.56.5018. URL: https://
link.aps.org/doi/10.1103/PhysRevE.56.5018.
[3] Gavin E. Crooks. “Entropy production fluctuation theorem and the
nonequilibrium work relation for free energy differences”. In: Phys. Rev.
E 60 (3 1999), pp. 2721–2726. DOI: 10.1103/PhysRevE.60.2721. URL:
https://link.aps.org/doi/10.1103/PhysRevE.60.2721.
[4] Denis J. Evans and Debra J. Searles. “Equilibrium microstates which generate
second law violating steady states”. In: Phys. Rev. E 50 (2 1994),
pp. 1645–1648. DOI: 10.1103/PhysRevE.50.1645. URL: https://
link.aps.org/doi/10.1103/PhysRevE.50.1645.
[5] Denis J. Evans, E. G. D. Cohen, and G. P. Morriss. “Probability of second
law violations in shearing steady states”. In: Phys. Rev. Lett. 71 (15 1993),
pp. 2401–2404. DOI: 10.1103/PhysRevLett.71.2401. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.71.2401.
[6] G. Gallavotti and E. G. D. Cohen. “Dynamical Ensembles in Nonequilibrium
Statistical Mechanics”. In: Phys. Rev. Lett. 74 (14 1995), pp. 2694–2697.
DOI: 10.1103/PhysRevLett.74.2694. URL: https://link.aps.
org/doi/10.1103/PhysRevLett.74.2694.
[7] Ken Sekimoto. “Langevin Equation and Thermodynamics”. In: Progress of
Theoretical Physics Supplement 130 (Jan. 1998), pp. 17–27. ISSN: 0375-9687.
DOI: 10.1143/PTPS.130.17. eprint: https://academic.oup.com/
ptps/article-pdf/doi/10.1143/PTPS.130.17/5213518/130-
17.pdf. URL: https://doi.org/10.1143/PTPS.130.17.
[8] Udo Seifert. “Stochastic thermodynamics, fluctuation theorems and
molecular machines”. In: Reports on Progress in Physics 75.12 (2012),
p. 126001. DOI: 10.1088/0034-4885/75/12/126001. URL: https:
//dx.doi.org/10.1088/0034-4885/75/12/126001.
[9] Shoichi Toyabe et al. “Experimental test of a new equality: Measuring heat
dissipation in an optically driven colloidal system”. In: Phys. Rev. E 75 (1
2007), p. 011122. DOI: 10.1103/PhysRevE.75.011122. URL: https:
//link.aps.org/doi/10.1103/PhysRevE.75.011122.
[10] Takahiro Harada and Shin-ichi Sasa. “Equality Connecting Energy Dissipation
with a Violation of the Fluctuation-Response Relation”. In: Phys.
Rev. Lett. 95 (13 2005), p. 130602. DOI: 10 . 1103 / PhysRevLett .
95 . 130602. URL: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.95.130602.
[11] Mark Newman. Networks: An Introduction. Oxford University Press,
Mar. 2010. ISBN: 9780199206650. DOI: 10 . 1093 / acprof : oso /
9780199206650.001.0001. URL: https://doi.org/10.1093/
acprof:oso/9780199206650.001.0001.
[12] Roger Guimerà, Marta Sales-Pardo, and Luís A. Nunes Amaral. “Modularity
from fluctuations in random graphs and complex networks”. In:
Phys. Rev. E 70 (2 2004), p. 025101. DOI: 10 . 1103 / PhysRevE . 70 .
025101. URL: https://link.aps.org/doi/10.1103/PhysRevE.
70.025101.
[13] M. E. J. Newman. “Modularity and community structure in networks”. In:
Proceedings of the National Academy of Sciences 103.23 (2006), pp. 8577–8582.
DOI: 10.1073/pnas.0601602103. eprint: https://www.pnas.org/
doi/pdf/10.1073/pnas.0601602103. URL: https://www.pnas.
org/doi/abs/10.1073/pnas.0601602103.
[14] M. E. J. Newman and M. Girvan. “Finding and evaluating community
structure in networks”. In: Phys. Rev. E 69 (2 2004), p. 026113. DOI: 10.
1103/PhysRevE.69.026113. URL: https://link.aps.org/doi/
10.1103/PhysRevE.69.026113.
[15] Vincent D Blondel et al. “Fast unfolding of communities in large networks”.
In: Journal of Statistical Mechanics: Theory and Experiment 2008.10
(Oct. 2008), P10008. ISSN: 1742-5468. DOI: 10.1088/1742-5468/2008/
10/p10008. URL: http://dx.doi.org/10.1088/1742- 5468/
2008/10/P10008.
[16] Paul L. Erdos and Alfréd Rényi. “On random graphs. I.” In: Publicationes
Mathematicae Debrecen (1959). DOI: https : / / doi . org / 10 . 5486 %
2FPMD.1959.6.3-4.12. URL: https://api.semanticscholar.
org/CorpusID:253789267.
[17] Wikimedia Commons. File:Hierarchical network model example.svg — Wikimedia
Commons, the free media repository. [Online; accessed 13-May-2024].
2020. URL: https://commons.wikimedia.org/w/index.php?
title = File : Hierarchical _ network _ model _ example . svg &
oldid=512303617.
[18] M. Ostilli. “Cayley Trees and Bethe Lattices: A concise analysis for mathematicians
and physicists”. In: Physica A: Statistical Mechanics and its Applications
391.12 (2012), pp. 3417–3423. ISSN: 0378-4371. DOI: https :
/ / doi . org / 10 . 1016 / j . physa . 2012 . 01 . 038. URL:
https : / / www . sciencedirect . com / science / article / pii /
S0378437112000647.
[19] Wikimedia Commons. File:Reseau de Bethe.svg — Wikimedia Commons, the
free media repository. [Online; accessed 14-May-2024]. 2020. URL: https:
//commons.wikimedia.org/w/index.php?title=File:Reseau_
de_Bethe.svg&oldid=499918548.
[20] Anna Frishman and Pierre Ronceray. “Learning Force Fields from Stochastic
Trajectories”. In: Phys. Rev. X 10 (2 2020), p. 021009. DOI: 10.1103/
PhysRevX.10.021009. URL: https://link.aps.org/doi/10.
1103/PhysRevX.10.021009.
[21] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory 2nd
Edition (Wiley Series in Telecommunications and Signal Processing). Wiley-
Interscience, 2006. ISBN: 0471241954.
[22] Marco Baiesi and Gianmaria Falasco. “Inflow rate, a time-symmetric
observable obeying fluctuation relations”. In: Phys. Rev. E 92 (4 2015),
p. 042162. DOI: 10 . 1103 / PhysRevE . 92 . 042162. URL: https : / /
link.aps.org/doi/10.1103/PhysRevE.92.042162.
[23] Udo Seifert. “Stochastic thermodynamics, fluctuation theorems and
molecular machines”. In: Reports on Progress in Physics 75.12 (2012),
p. 126001. DOI: 10.1088/0034-4885/75/12/126001. URL: https:
//dx.doi.org/10.1088/0034-4885/75/12/126001.
59 |