摘要(英) |
In the axion haloscope experiments, the quality factor, form factor, and volume of the resonator are important. Most experiments commonly use cylindrical cavities with a tuning rod; however, their volume is limited by the target resonant frequency. Thus, the development of a new frequency-tunable cavity with a good performance is needed. A novel structure called the conic-shell cavity was proposed in 2020. I simulated the characteristic of the conic-shell cavity and validated the results by measuring the performance of two prototypes fabricated with aluminum. Using this design, we expect to improve the experiment′s sensitivity to the axion-photon-photon coupling by a factor of 2.6. |
參考文獻 |
[1] Chao-Lin Kuo. “Large-volume centimeter-wave cavities for axion
searches”. In: Journal of Cosmology and Astroparticle Physics (2020).
[2] Chao-Lin Kuo. “Symmetrically tuned large-volume conic shell-cavities for
axion searches”. In: Journal of Cosmology and Astroparticle Physics (2021).
[3] Hsin Chang et al. “First Results from the Taiwan Axion Search Experiment
with a Haloscope at 19.6 µeV”. In: Phys. Rev. Lett. 129 (11 2022), p. 111802.
DOI: 10.1103/PhysRevLett.129.111802. URL: https://link.
aps.org/doi/10.1103/PhysRevLett.129.111802.
[4] Ta-Pei Cheng and Ling-Fong Li. Gauge Theory of Elemeentary Particle
Physics. Oxford University Press, 1984.
[5] I.S. Altarev et al. “New measurement of the electric dipole moment of the
neutron”. In: Physics Letters B 276.1 (1992), pp. 242–246. ISSN: 0370-2693.
DOI: https://doi.org/10.1016/0370-2693(92)90571-K. URL:
https : / / www . sciencedirect . com / science / article / pii /
037026939290571K.
[6] R.J. Crewther et al. “Chiral estimate of the electric dipole moment of the
neutron in quantum chromodynamics”. In: Physics Letters B 88.1 (1979),
pp. 123–127. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-
2693(79 ) 90128 - X. URL: https : / / www . sciencedirect . com /
science/article/pii/037026937990128X.
[7] Jihn E. Kim. “Weak-Interaction Singlet and Strong CP Invariance”. In:
Phys. Rev. Lett. 43 (2 1979), pp. 103–107. DOI: 10.1103/PhysRevLett.
43 . 103. URL: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.43.103.
[8] M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov. “Can confinement ensure natural CP invariance of strong interactions?” In: Nuclear Physics
B 166.3 (1980), pp. 493–506. ISSN: 0550-3213. DOI: https : / / doi .
org / 10 . 1016 / 0550 - 3213(80 ) 90209 - 6. URL: https :
/ / www . sciencedirect . com / science / article / pii /
0550321380902096.
47
[9] Michael Dine, Willy Fischler, and Mark Srednicki. “A simple solution to
the strong CP problem with a harmless axion”. In: Physics Letters B 104.3
(1981), pp. 199–202. ISSN: 0370-2693. DOI: https://doi.org/10.1016/
0370 - 2693(81 ) 90590 - 6. URL: https : / / www . sciencedirect .
com/science/article/pii/0370269381905906.
[10] A P Zhitnitskii. “Possible suppression of axion-hadron interactions”. In:
Sov. J. Nucl. Phys. (Engl. Transl.); (United States) 31 (). URL: https://www.
osti.gov/biblio/7063072.
[11] E. Corbelli and P. Salucci. “The extended rotation curve and the dark matter halo of M33”. In: Monthly Notices of the Royal Astronomical Society 311.2
(Jan. 2000), 441–447. ISSN: 1365-2966. DOI: 10 . 1046 / j . 1365 - 8711 .
2000.03075.x. URL: http://dx.doi.org/10.1046/j.1365-
8711.2000.03075.x.
[12] Lars Bergström. “Dark matter candidates”. In: New Journal of Physics 11.10
(Oct. 2009), p. 105006. ISSN: 1367-2630. DOI: 10.1088/1367-2630/11/
10/105006. URL: http://dx.doi.org/10.1088/1367-2630/11/
10/105006.
[13] John Preskill, Mark B. Wise, and Frank Wilczek. “Cosmology of the invisible axion”. In: Physics Letters B 120.1 (1983), pp. 127–132. ISSN: 0370-2693.
DOI: https://doi.org/10.1016/0370-2693(83)90637-8. URL:
https : / / www . sciencedirect . com / science / article / pii /
0370269383906378.
[14] L.F. Abbott and P. Sikivie. “A cosmological bound on the invisible axion”. In: Physics Letters B 120.1 (1983), pp. 133–136. ISSN: 0370-2693. DOI:
https : / / doi . org / 10 . 1016 / 0370 - 2693(83 ) 90638 - X. URL:
https : / / www . sciencedirect . com / science / article / pii /
037026938390638X.
[15] Michael Dine and Willy Fischler. “The not-so-harmless axion”. In: Physics
Letters B 120.1 (1983), pp. 137–141. ISSN: 0370-2693. DOI: https : / /
doi . org / 10 . 1016 / 0370 - 2693(83 ) 90639 - 1. URL: https :
/ / www . sciencedirect . com / science / article / pii /
0370269383906391.
[16] P. Sikivie. “Experimental Tests of the "Invisible" Axion”. In: Phys. Rev. Lett.
51 (16 1983), pp. 1415–1417. DOI: 10.1103/PhysRevLett.51.1415.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.51.
1415.
[17] P. Sikivie. “Detection rates for “invisible”-axion searches”. In: Phys. Rev. D
32 (11 1985), pp. 2988–2991. DOI: 10.1103/PhysRevD.32.2988. URL:
https://link.aps.org/doi/10.1103/PhysRevD.32.2988.
48
[18] Javier Redondo and Andreas Ringwald. “Light shining through walls”.
In: Contemporary Physics 52.3 (May 2011), 211–236. ISSN: 1366-5812. DOI:
10.1080/00107514.2011.563516. URL: http://dx.doi.org/10.
1080/00107514.2011.563516.
[19] J I Read. “The local dark matter density”. In: Journal of Physics G: Nuclear
and Particle Physics 41.6 (May 2014), p. 063101. ISSN: 1361-6471. DOI: 10.
1088/0954-3899/41/6/063101. URL: http://dx.doi.org/10.
1088/0954-3899/41/6/063101.
[20] Hsin Chang et al. “Taiwan axion search experiment with haloscope: Designs and operations”. In: Review of Scientific Instruments 93.8 (Aug. 2022).
ISSN: 1089-7623. DOI: 10.1063/5.0098783. URL: http://dx.doi.
org/10.1063/5.0098783.
[21] David M Pozar. Microwave engineering; 3rd ed. Hoboken, NJ: Wiley, 2005.
URL: https://cds.cern.ch/record/882338.
[22] John David Jackson. Classical Electrodynamics. Wiley, 1998. ISBN: 978-0-471-
30932-1.
[23] YI-CHIEH CHANG. “Development of a High Quality Factor Tunable Resonant Cavity Used in Axion Search Systems”. MA thesis. Ming Chi University of Technology, 2022.
[24] R.A. Waldron. “Perturbation theory of resonant cavities”. English. In: Proceedings of the IEE - Part C: Monographs 107 (12 1960), 272–274(2). ISSN: 0369-
8904. URL: https : / / digital - library . theiet . org / content /
journals/10.1049/pi-c.1960.0041.
[25] Binshen Meng, J. Booske, and R. Cooper. “Extended cavity perturbation technique to determine the complex permittivity of dielectric materials”. In: IEEE Transactions on Microwave Theory and Techniques 43.11 (1995),
pp. 2633–2636. DOI: 10.1109/22.473190. |