博碩士論文 110222029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:3.14.246.52
姓名 邵詳崴(Siang-Wei Shao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 基於電磁誘發透明的量子薛丁格方程式模擬器
(Quantum Schrödinger Equation Simulator based on Electromagnetically Induced Transparency)
相關論文
★ 利用Mössbauer放射性同位素與57FeBO3晶體產生X-ray短脈衝光源的理論研究★ 57Fe原子核量子光學中γ-ray光子回波的理論研究
★ 一維席捲式增益介質中超螢光傳播現象的理論研究★ 無鏡式電磁誘發光放大器
★ 中主量子數雷德堡電磁誘發透明系統中的慢光傳播現象★ 利用X射線自由電子雷射在漸細型波導管中激發原子核的理論研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 本研究主要目的是探討如何使用光來模擬帶電粒子在電磁場中的運
動。我所使用的方法是電磁誘發透明(EIT),通過調控EIT系統中的各
項參數,例如耦合光以及雙光子失諧,即可為EIT中的暗態極化子合成
相應的人造規範場。進而讓系統成為一個可以計算薛丁格方程式的模擬
器。在此研究中,我使用了此EIT薛丁格方程式模擬器模擬了幾個不同
的電磁場環境,分別是等效靜磁場下的朗道能階(Landaulevel),等效靜
電場下的量子諧振子(Quantum Harmonic Oscillation) 以及使用等效時
變電場來展示受激拉曼絕熱通道(STIRAP)。附錄則是介紹我研究中所
使用到的數值方法等。
摘要(英) This study explores the use of light to simulate the motion of charged particles in electromagnetic fields, employing Electromagnetically Induced Transparency (EIT). By manipulating parameters within the EIT system, such as coupling light and two-photon detuning, synthetic electromagnetic fields can be generated for dark-state polaritons, let the system become a quantum Schrödinger equation simulator. We utilize this EIT Schrödinger equation simulator to mimic various eletromagnetic field environments, including Landau levels under an effective magnetic field, quantum harmonic oscillation under an effective static electric field, and using an effective time
varing electric field to demonstrate STIRAP. The appendix details numerical methods employed in this study.
關鍵字(中) ★ 電磁誘發透明
★ 人造規範場
關鍵字(英)
論文目次 摘要vii
Abstract ix
誌謝xi
目錄xiii
圖目錄xv
使用符號與定義xix
一、第一章緒論1
1.1 EIT系統.................................................................. 1
1.2靜止脈衝.................................................................. 3
1.3人造規範場............................................................... 5
1.4受激拉曼絕熱通道(STIRAP)........................................ 7
二、第二章理論模型9
2.1一維EIT系統........................................................... 9
2.2二維EIT系統........................................................... 15
2.3量子薛丁格方程式模擬器............................................. 17
2.4朗道能階.................................................................. 21
xvii
目錄
三、第三章模擬分析25
3.1朗道能階.................................................................. 25
3.1.1 EIT的朗道能階................................................ 27
3.1.2二維EIT在人造規範勢的尺度效應....................... 29
3.1.3 EIT在朗道能階中的邊界態................................. 31
3.2量子諧振子............................................................... 34
3.3 EIT系統的STIRAP................................................... 37
3.3.1系統位能......................................................... 37
3.3.2能階躍遷......................................................... 38
四、第四章結論41
參考文獻43
附錄A附錄47
A.1數值模擬方法............................................................ 47
A.2漩渦計算範圍............................................................ 48
A.3設計障礙區............................................................... 48
參考文獻 [1] Harris, S. E., J. E. Field, and A. Imamoğlu, Phys. Rev. Lett. 64. 1107 (1990).
[2] M. Fleischhauer, A. Imamoglu and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[3] K.-J. Boller, A. Imamoğlu, and S. E. Harris, Phys. Rev. Lett. 66. 2593 (1991).
[4] C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, Nature 409, 490-493 (2001).
[5] Y. H. Chen, M. J. Lee, I C. Wang, S. Du, Y. F. Chen, Y. C. Chen and Ite A. Yu,
Phys. Rev. Lett. 110, 083601 (2013).
[6] M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Nature 426, 638-641 (2003).
[7] Y. W. Lin, W. T. Liao, T. Peters, H. C. Chou, J. S. Wang, H. W. Cho, P. C. Kuan,
and Ite A. Yu, Phys. Rev. Lett. 102, 213601 (2009).
[8] Y.-J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman,
Synthetic magnetic fields for ultracold neutral atoms, Nature (London) 462, 628
(2009).
[9] Y.-J. Lin, R. L. Compton, K. Jiménez-García, W. D. Phillips, J. V. Porto, and I.
B. Spielman, A synthetic electric force acting on neutral atoms, Nat. Phys. 7, 531
(2011).
[10] Jean Dalibard, Fabrice Gerbier, Gediminas Juzeliūnas, and Patrik Ohberg, “Collo
quium: Artificial gauge potentials for neutral atoms,"Rev. Mod. Phys. 83, 1523
1543(2011).
[11] Vitanov, N. V., Fleischhauer, M., Shore, B. W., & Bergmann, K. (2001). Coherent
manipulation of atoms and molecules by sequential laser pulses. Reviews of Modern
Physics, 73(2), 399-452.
[12] Bergmann, K., Theuer, H., & Shore, B. W. (1998). Coherent population transfer
among quantum states of atoms and molecules. Reviews of Modern Physics, 70(3),
1003-1025.
[13] Kobrak, M. N., & Rice, S. A. (1998). Coherent population transfer via a resonant
intermediate state: the breakdown of adiabatic passage. Physical Review A, 57(2),
1158-1163.
43
參考文獻
[14] K. von Klitzing, Quantum Hall effect: Discovery and application, Annu. Rev. Con
dens. Matter Phys. 8, 13 (2017).
[15] T. H. Hansson, M. Hermanns, S. H. Simon, and S. F. Viefers, Quantum Hall physics:
Hierarchies and conformal field theory techniques, Rev. Mod. Phys. 89, 025005
(2017).
[16] K. von Klitzing, T. Chakraborty, P. Kim, V. Madhavan, X. Dai, J. McIver, Y.
Tokura, L. Savary, D. Smirnova, A. M. Rey, C. Felser, J. Gooth, and X. Qi, 40 years
of the quantum Hall effect, Nat. Rev. Phys. 2, 397 (2020).
[17] N. Schine, A. Ryou, A. Gromov, A. Sommer, and J. Simon, Synthetic Landau levels
for photons, Nature (London) 534, 671 (2016).
[18] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman,
D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev.
Mod. Phys. 91, 015006 (2019).
[19] M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys.
82, 3045 (2010).
[20] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev.
Mod. Phys. 82, 1959 (2010)
[21] J. Otterbach, J. Ruseckas, R. G. Unanyan, G. Juzeliunas, and M. Fleischhauer,
Effective magnetic fields for stationary light, Phys. Rev. Lett. 104, 033903 (2010).
[22] M. Hafezi, A. S. Sørensen, E. Demler, and M. D. Lukin,“Fractional quantum hall
effect in optical lattices,"Phys.Rev. A 76, 023613 (2007).
[23] F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveg
uides in photonic crystals with broken time-reversal symmetry,"Phys. Rev. Lett.
100, 013904 (2008).
[24] Mohammad Hafezi, S Mittal, J Fan, A Migdall, and JM Taylor,“Imaging topological
edge states in silicon photonics,"Nature Photonics 7, 1001–1005 (2013).
[25] Mikael C Rechtsman, Julia M Zeuner, Yonatan Plotnik, Yaakov Lumer, Daniel
Podolsky, Felix Dreisow, Stefan Nolte, Mordechai Segev, and Alexander Szameit,
“Photonic floquet topological insulators,"Nature 496, 196–200 (2013).
[26] Da-Wei Wang, Han Cai, Luqi Yuan, Shi-Yao Zhu, and Ren-Bao Liu, “Topological
phase transitions in superradiance lattices,"Optica 2, 712–715 (2015).
[27] M Schmidt, S Kessler, V Peano, O Painter, and F Marquardt, “Optomechanical
creation of magnetic fields for photons on a lattice,"Optica 2, 635–641 (2015).
[28] Momchil Minkov and Vincenzo Savona,“Haldane quantum hall effect for light in a
dynamically modulated array of resonators,"Optica 3, 200–206 (2016).
44
[29] P St-Jean, V Goblot, E Galopin, A Lemaître, T Ozawa, L Le Gratiet, I Sagnes, J
Bloch, and A Amo,“Lasing in topological edge states of a one-dimensional lattice,"
Nature Photonics 11, 651–656 (2017).
[30] Miguel A Bandres, Steffen Wittek, Gal Harari, Midya Parto, Jinhan Ren, Mordechai
Segev, Demetrios N Christodoulides, and Mercedeh Khajavikhan,“Topological in
sulator laser: Experiments,"Science 359, eaar4005 (2018).
[31] Sebabrata Mukherjee, Harikumar K. Chandrasekharan, Patrik Ohberg, Nathan
Goldman, and Robert R. Thomson, “State-recycling and time-resolved imaging
in topological photonic lattices,"Nature Communications 9, 4209 (2018).
[32] Alessio D'Errico, Filippo Cardano, Maria Maffei, Alexandre Dauphin, Raouf Bar
boza, Chiara Esposito, Bruno Piccirillo, Maciej Lewenstein, Pietro Massignan, and
Lorenzo Marrucci, “Two-dimensional topological quantum walks in the momentum
space of structured light,"Optica 7, 108–114 (2020).
指導教授 廖文德(Wen-Te Liao) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明